• 详情 数字普惠金融与企业家精神
    中央深化金融供给侧结构性改革的重点之一是解决民营企业“融资难,融资贵”问题。本文运用中国数字数字普惠金融指数和中国居民收入调查数据,研究发现数字普惠金融可以提升创业概率。机制分析表明,数字普惠金融对创业的影响渠道是缓解个体融资约束,特别是低收入群体和传统金融发展落后地区中表现尤甚。但是上述作用影响存在地区间不平衡不充分问题,只集中在经济发达、市场化程度高的地区。其次,异质性分析发现,在人们之间信任程度越低、风险偏好越高的地区,数字普惠金融对企业家精神的促进作用越弱。此外,本文还发现数字普惠金融存在“数字鸿沟”现象,其对年老的个体和受教育程度低的个体创业的促进作用影响更小。上述发现表明数字普惠金融有助于缓解民营企业融资困境,但是其作用存在局限性。本文的政策建议是,在推进数字普惠金融政策时,要完善地区政策配套实施,因地制宜,推动金融同经济的均衡发展,为畅通国内国际大循环提供有力的金融支持。
  • 详情 数字普惠金融对制造业出口复杂度提升的空间效应研究
    数字普惠金融能否作为提升制造业出口复杂度的新动能,对我国制造业全球价值链攀升意义重大。本文在阐述数字普惠金融对制造业出口复杂度的直接传导效应和间接调节效应的基础上,基于 2011-2018 年中国省级面板数据,采用空间杜宾模型,实证检验数字普惠金融对制造业出口复杂度的直接传导效应和间接调节效应。实证结果表明,数字普惠金融及其各维度能显著促进本地区制造业出口复杂度的提升,但溢出效应呈现显著的虹吸现象;数字普惠金融通过人力资本积累以及 FDI 技术溢出,能显著促进本地区以及周边地区制造业出口产品技术复杂度。
  • 详情 通才vs专才:高管工作经历与企业并购行为
    人才是第一生产力,特别是在党中央提出国家中长期人才发展规划纲要之后,如何“识才”、“用才”更成为学术界研究的一个热点课题。本文手工整理2002-2015年共计3730位公司CEO的详细个人简历信息,构建高管“通才指数”,研究CEO通才指数如何影响企业的并购行为及并购绩效。研究发现:(1)相比单纯职业经历的CEO(专才型CEO)而言,复合职业经历的CEO(通才型CEO)更擅长主导并购活动——通才型CEO发起的并购活动更为频繁,该结论在通过Heckman两阶段自选择模型、PSM样本回归、考察CEO变更事件、通才指数的不同构建方法、控制CEO天赋等一系列稳健性检验后依旧成立。(2)通才型CEO所开展的跨行业和跨地域并购更为频繁,且更多地涉及其过去任职过的行业或地域。(3)通才型CEO主导的并购活动可以获得更好的短期市场反应和长期绩效,这主要源自通才型CEO在并购完成后吸纳了更多的金融机构股东、强化了银企关系并聘用了更多具有政治关系的独立董事。进一步研究发现:通才型CEO具有更高的风险承担偏好,促使其敢于发起包括企业并购在内的高风险决策。这些研究结论不仅拓展了高管个人工作经历如何影响公司财务行为的研究,对于企业如何选才、用才,以提高企业并购效率、促进企业发展也具有重要的现实意义。
  • 详情 Controlling Shareholder Stock Pledge, Aggravated Expropriation and Corporate Acquisitions
    We examine the effects of controlling shareholder stock pledge on corporate acquisition decisions and associated performance. Consistent with our aggravated expropriation hypothesis, we find that pledging firms in China initiate more takeovers, but these acquisitions conducted by pledging firms experience lower announcement returns. We adopt the difference in differences and the instrumental variable approaches to establish causality. Channel tests further reveal that pledging acquirers overpay for the deals and are more likely to be involved in related party transactions. Cross-sectionally, we find that the relations between the share pledge and corporate acquisitiveness and returns are more pronounced for non-SOEs and firms with high-level excess cash. Lastly, we document that pledging acquirers underperform in the long-run in terms of lower ROAs and a greater likelihood of goodwill impairment. Overall, our findings indicate that controlling shareholders increasingly expropriate minority shareholders through self-serving corporate takeovers after the stock pledge.
  • 详情 模块化企业并购及并购浪潮
    模块化及其创新是导致信息产业竞争激烈的根本原因,高强度竞争迫使企业采取兼并战略。基于模块化特征,本文建立模块化产品市场竞争模型和强强企业兼并与弱弱企业兼并之间的兼并期权博弈模型,研究模块创新对并购决策的影响和并购浪潮产生的机制。研究结果表明,模块化产品创新的持续性导致模块化产业并购频发,而模块化系统中重要模块的技术进步周期是导致模块化产业并购浪潮发生的重要原因。本文研究结论从技术层面为第五、六次并购浪潮中IT产业并购的集中爆发提供了合理解释。
  • 详情 Forecasting Bond Return with Real Time Macroeconomic Data: A Predictive Principal Component Approach
    Ghysels, Horan, and Moench (2017) show that extracting principal component (PC) factors from real time as opposed to revised macro variables substantially reduces their power in forecasting bond excess returns. In this paper, we propose a predictive principal component (PPC) approach to extract factors from information pertaining to expected bond excess returns contained in real time macro variables. In so doing, the new PPC factors remove common noises in real time data and exhibit significant bond return predictability. The inand out-of-sample R2s improve by more than 50% relative to the PC factors. Moreover, the forecasted bond excess returns are countercyclical, consistent with standard asset pricing models.
  • 详情 风险承担、首次信用评级与公司债券融资成本
    公司的风险承担水平显著影响信用评级,进而影响公司债券的发行资格与融资成本,故发债公司存在基于评级的风险承担策略调整动机。本文考察发债公司获得首次评级前风险承担水平的变化情况,并检验风险承担水平对首次信用评级的影响及其市场反应。实证结果发现:在获得首次信用评级前公司风险承担水平持续下降,而后缓慢回升,公司存在针对性调整风险承担水平以迎合评级需求的行为;风险承担水平与主体信用评级显著负相关;通过信用评级的中介效应,风险承担水平与债券融资成本显著正相关。公司通过针对性地调整风险承担水平可获取较为理想的主体信用评级,并获得融资成本的有效节约。
  • 详情 Dealer Inventory, Short Interest and Price Efficiency in the Corporate Bond Market
    We propose a model of trading in the over-the-counter corporate bond market where investors can buy and sell bonds through a dealer and can short bonds by borrowing them in the securities lending market. The model predicts that higher dealer inventory costs are associated with lower short interest for bonds, particularly for high-credit-quality bonds. We construct bond-level proxies for inventory costs and provide empirical evidence in support of the model's prediction. We find that much of the dramatic decline in short interest observed since the Great Financial Crisis (GFC) can be explained by an increase in proxies for inventory costs. We document that the short-sale constraints imposed by higher dealer inventory costs have had a negative impact on price efficiency. Our findings suggest that tighter post-GFC regulation may have had unintended consequences for bond market quality.
  • 详情 THE PRICE AND QUANTITY OF INTEREST RATE RISK
    Studies of the dynamics of bond risk premia that do not account for the corresponding dynamics of bond risk are hard to interpret. We propose a new approach to modeling bond risk and risk premia. For each of the US and China, we reduce the government bond market to its first two principal-component bond-factor portfolios. For each bond-factor portfolio, we estimate the joint dynamics of its volatility and Sharpe ratio as functions of yield curve variables, and of VIX in the US. We have three main findings.(1) There is an important second factor in bond risk premia. (2) Time variation in bond return volatility is as important as time variation in bond Sharpe ratios. (3) Bond risk premia are solely compensation for bond risk, as no-arbitrage theory predicts. Our approach also allows us to document interesting cyclical and secular time-variation in the term structure of bond risk premia in both the US and China.
  • 详情 The Value of Big Data in a Pandemic
    Although big data technologies such as digital contact tracing and health certification apps have been widely used to combat the COVID-19 pandemic, little empirical evidence regarding their effectiveness is available. This paper studies the economic and public health effects of the "Health Code" app in China. By exploiting the staggered implementation of this technology across 322 Chinese cities, I find that this big data technology significantly reduced virus transmission and facilitated economic recovery during the pandemic. A macroeconomic Susceptible-Infectious-Recovered (SIR) model calibrated to the micro-level estimates shows that the technology reduced the economic loss by 0.5% of GDP and saved more than 200,000 lives by alleviating informational frictions during the COVID-19 outbreak.