股票市场和债券市场的流动性溢出效应研究

王茵田 文志瑛 清华大学 经济管理学院

2010年3月

摘要:股票市场和债券市场变量之间的溢出效应是近来金融学研究的一个重要课题。本文实证研究了我国股票市场和债券市场流动性之间的溢出效应,提供了关于我国股票和债券市场流动性一体化的证据。研究发现:首先,我国股票市场和债券市场流动性之间存在显著领先滞后关系并互为因果关系,符合"flight to liquidity";其次,宏观环境的变化对两个市场的流动性会产生显著的影响;更为重要的是,宏观环境对市场流动性的影响很大程度上是通过另一市场的传导而间接的发生作用。

关键词:流动性,溢出效应,宏观变量,股票市场,债券市场

一引言

在资本自由流动,信息充分的市场中,股市和债市在理论上是可以相互参照定价。因而收益率,波动率和流动性等市场变量应该存在一定的联动性和领先滞后关系,或称溢出效应。股票市场和债券市场间的溢出效应是指两个市场不仅要受过去几期自身变量的制约,而且要收到对方市场显著影响。然而在我国,在经济体制,监管制度等各种因素影响下,两个市场被人为分割开来,社会资金不能自由流动,尤其我国的债券市场发展远远落后于股票市场。这样就决定了我国股市和债市的溢出可能表现出和西方成熟金融市场不同的特征。而了解这些特征能够为投资者提高组合收益,降低组合风险提供帮助,并且为管理者制定政策提供借鉴。目前,我国关于市场溢出效应的研究主要集中在收益率的领先滞后关系上,而很少研究两个市场流动性的溢出效应。

流动性是检查证券市场是否健康有序地运行的指标之一,也逐渐成为金融研究领域的重要课题。本篇文章分析了流动性溢出效应的机理。实证研究内容具体包括两个方面:其一,股票市场和债券市场流动性的溢出效应的存在;流动性和其他市场变量之间溢出效应的存在。这类领先滞后关系的发现为投资者提供了动态调整资产组合的依据和指导。其二,本文研究宏观环境的变化对股票和债券市场流动性的影响,并解析了宏观变量的冲击是如何直接和间接的影响到两个市场的流动性的。而了解宏观变量对两个市场的作用过程为管理者制定政策,加强宏观调控的力度,控制调控的节奏提供了理论依据。

本文的结构如下安排:第二章是对文献的回顾及分析流动性溢出的原理;第三章是实证研究的设计和研究结果的分析;第四章为结论部分。

二文献综述和流动性溢出的机理分析

国外对股票和债券市场变量之前的溢出效应研究比较成熟。对于收益率,波动率和流动性这三个变量之间联动性和溢出效应的研究都比较丰富完善。较具代表性的文献有: Kwan(1996)发现股票市场的收益率领先债券一个星期; O'Hara and Oldfield(1986)发现市场的波动率的变化能够影响非流动性; Fleming, Kirby, and Ostidiek(1998)发现股票市场和债券市场之间不仅仅波动率有联动性,流动性也具有联动性; Chordia, Roll, and Subrahmanyam(2001)(CRS(2001))与 Chordia, Sarkar, and Subrahmanyam(2005)发现股票市场的收益率会影响其自身非流动性,而波动率对非流动性的影响是跨市场的。也就是说,一个市场的波动率会影响到另一个市场的流动性。

我国目前的研究主要集中在两市场收益率的溢出效应上。曾志坚和江洲(2007)和王璐和庞皓(2008)都分别使用上海证券交易所的日数据发现两市的收益率存在显著的溢出关系,但溢出效果不强。曾志坚和罗长青(2008)以换手率为流动性变量,利用 1997 至 2005 年上交所数据研究了两个市场流动性之间的联动关系。研究发现股票市场和债券市场月度流动性之间不存在领先滞后关系;而债券日度流动性领先股票日度流动性 3 天。王璐(2008)研究了宏观变量包括利率,通货膨胀,货币供应量等对两个市场收益率相关性的影响,并发现以上变量对股市和债市的收益率相关性确实有显著影响。

影响股市和债市溢出效应的原因可以很多。Fleming, Kirby and Ostdiek (1998)将影响因素归为两类:共同信息和只作用于单一市场的信息。共同信息包括宏观变量或市场环境的改变;单一市场信息则是市场内部的信息。我们在本文里则从另一个角度来对信息进行划分。因为不论哪种信息,其对市场的流动性或者其他变量的影响都可以分为直接作用和间接作用。首先,当新信息或者冲击发生时,一个市场内部的收益率,波动率和流动性等市场变量会发生相应的改变,这种作用可以称为新信息的直接作用。国外有很多这方面的实证研究。Fleming and Remolona (1997)发现宏观变量显著影响国债市场的流动性。其次,如果影响资产定价的风险因子发生变化,市场的预期收益率亦会改变,从而投资者为收益最大化重新调整其资产组合。而这种跨市场的套期保值行为会导致供给和需求的产生从

而影响到对方市场的流动性。这种作用可称为新信息的间接作用,是由一个市场传导到另一市场上的,也就是"溢出"的产生。

总之,溢出效应都是通过投资者的交易实现的。这种溢出效应的产生机理也可以非常简单的概括为"flight-to-quality"或者"flight-to-liquidity",也称"跷跷板效应"。比如,股价的激增会吸引债券市场的资金进入股市,而当股市重挫时,恐慌的投资者会抛售股票而购买风险性更低的政府债券。Goetzmann and Massa(2002)发现投资者根据每天的信息和风险的变化来进行股市和债市之间资金的流转。Longstaff(2004)发现债券的流动性溢价和股票市场与债券市场之间资金流动的变化相关。这意味着流动性和投资者的跨市场交易行为有很大关系。Goyenko and Ukhov(2009)在此基础上使用美国联邦政府债券和 CRSP 的 NYSE/AMEX 加值平均市场指数,发现两个市场的流动性存在显著溢出现象,符合"flight-to-liquidity";并发现货币政策显著影响市场流动性,其影响通过债券市场传导至股票市场。

根据以上分析,当一个宏观变量发生改变时,我们可以从直接和间接两方面来分析其对市场流动性(或其他市场变量)的影响。我们知道债券价格取决于折现率或者利息率;股票价格取决于折现率和对未来现金流的预期。因而宏观变量对债券价格的影响有一个渠道,而对股票价格的影响有两个渠道。宽松的货币政策即可以直接导致市场资金的增加,鼓励交易,从而升高流动性;也可以改变投资者对未来价格的预期从而导致对投资组合的调整,这会间接影响到股票和债券市场的流动性。当利息率变化时,一方面由于贴现率的改变股票和债券的价格发生变化,这会导致跨市场交易,间接影响到两个市场的流动性;由利息率变化引发的货币供应量的变化也会直接影响两个市场的流动性。通货膨胀会影响投资者对股票市场未来现金流的预期从而导致股票价格和流动性直接发生变化;另一方面,在通货膨胀的风险下,资金会从债券市场流向股票市场以求避险,从而间接的影响了两个市场的流动性。总之,直接和间接两方面的作用是相辅相成,动态交互发生的。两种影响对流动性可以是同方向的也可以是反方向的,综合作用的结果取决于两种方向的力量对比。

三实证研究设计

从上节中的分析可以看出,两个市场的流动性受到宏观环境或市场内部环境变化时的直接影响,也受到由于跨市场交易导致的来自另一个市场的间接影响,或者产生溢出效应。因而,两个变量之间没有清晰绝对的内生和外生关系。所以,我们采用 VAR 模型来进行分析。

理论上,如果两个市场存在流动性溢出或领先滞后关系,那么重要的市场变量如收益率和波动率也会对流动性产生溢出影响。因此除了两个市场的流动性指标,我们还选取两个市场的收益率和波动率作为控制变量。并期待这些变量的加入会带来新的发现。

我们将进行两次 VAR 的分析。首先在模型中只考虑流动性和市场变量。这样做是为了单纯的研究两个市场是否存在流动性的溢出效应。我们随后再引入宏观变量,着重分析当宏观变量发生变化时,两个市场的流动性是如何改变并溢出的。我们先建立了六个等式的 VAR 模型,包括以下六个变量:债券非流动性,债券收益率,债券波动率,股票非流动性,股票收益率以及股票波动率。具体模型为:

X和Y分别是债券和股票市场里代表非流动性,收益率和波动率的向量,维度为[3×1]。

(一) 流动性的度量

流动性可以定义为投资者根据市场的基本供给和需求状况,以合理价格迅速 交易一定数量资产的能力。因而,流动性是一个由交易时间,交易成本,交易数量 和交易弹性来反应的综合性的变量。目前,国内有限的相关文献是以债券换手率或 成交量作为流动性的衡量指标(曾志坚(2008))。但从市场微观结构理论的发展 演变的历史看,市场流动性的最重要指标是买卖价差,如果买卖价差越小,则表示立即执行交易的成本越小,市场流动性也越好。

我们用买卖价差来衡量债券市场的流动性。上海证券交易所的债券交易系统分别揭示三个(从 2003 年 12 月 8 日之后为五个)买入价量和三个最佳卖出价量,并根据每笔成交即时更新成交价,成交额,最高价,最低价等相关指标。假设某时点 t 时债权的三个最佳买价分别为 P_b^1, P_b^2, P_b^3 ($P_b^1 > P_b^2 > P_b^3$),对应的委托量分别为 Q_b^1, Q_b^2, Q_b^3 ,那么根据目前的公开信息,可以认为平均买价为

$$P_{b} = \frac{Q_{b}^{1}}{Q_{b}} P_{b}^{1} + \frac{Q_{b}^{2}}{Q_{b}} P_{b}^{2} + \frac{Q_{b}^{3}}{Q_{b}} P_{b}^{3}$$
,其中 $Q_{b} = Q_{b}^{1} + Q_{b}^{2} + Q_{b}^{3}$,类似可以定义平均卖价 P_{a} 。

我们选取在上海证券交易所进行交易的国债。剔除无效数据后,共有 12 支国债。尽管我国银行间市场是债券交易的主要场所,然而由于交易机制的不同导致交易频率较低,因而不存在真正意义上的高频数据,所以在本文中我们只将交易所市场的国债作为研究对象。根据 CRS(2001),我们采用比例报价价差

(Proportional quoted spread):

由于买卖价差和市场的流动性成反向运动,所以我们对此指标命名为"债券非流动性"。我们计算每一支国债在每一交易时点上的非流动性,并将一个交易日内所有国债的非流动性进行平均得到日流动性指标。周(月)度非流动性则是将一个周(月)内的日非流动性指标进行平均。为方便起见,我们对该指标乘以100。

对于股票市场的流动性,我们采用 Amihud(2002)和 Hasbrouck(2006)构建的基于价格影响的流动性衡量方法。

该指标衡量股票 i 在第 t 周(月)内的非流动性。 R_{u}^{i} 和 V_{u}^{i} 分别是股票 i 在第 d 天的收益率和成交金额(单位百万), $DAYS_{t}^{i}$ 是在第 t 周(月)内有效交易日的个数。该指标的经济含义是: 如果一支股票有较低的流动性(高数值的

 $ILLIQ_s_i$),相对于小的交易量,他的价格会有较大的波动。我们对该指标命名为"股票非流动性"。其明显的优点是避免了高频数据。并且将i选为上证指数可以避免对所有的股票求非流动性,极大的简化了计算强度。为计算的方便,我们给该指标乘以 10^5 。

(二) 变量的选择与数据来源

我们选取中信标普指数来计算债券日收益率(RETB),选用上证指数来计算股票日收益率(RETS)。并分别计算周平均值和月平均值。VOLB和 VOLS代表两个市场的波动率,是日收益率的周(月)标准差。我们对股票市场使用 Amihud(2002)的非流动性,对债券市场使用比例报价价差。我们的样本期间是从 2003年3月至2008年12月。剔除节假日后共有310个周观察值和70个月观察值。所有的数据来源于锐思数据库。根据 AIC和 Schwarz Bayesian Information Criterion,VAR模型的滞后阶数 K=1。VAR模型的稳定性的充分必要条件是参数矩阵所有特征根的绝对值小于1。我们采用这个检验并发现模型满足稳定条件。

图 1 展示了两组非流动性周数据在样本期间内的走势。可以看到,两个市场的非流动性有着较为明显的负相关性。在股票市场较为低迷的 2003 年-2005 年,与股票市场的低流动性(高非流动性)相反,债券市场有较好的流动性(低非流动性);而在股票牛市的 2006-2007 年,债券市场却表现出交易成本的逐渐上升。这种负相关性反映了"跷跷板效应"。

表1列示了包括市场变量在内的相关系数矩阵。我们只列出了周数据的相关系数,月数据的结论和周数据一致。首先,两个市场的收益率之间以及波动率之间都没有显著的相关性;债券市场的波动率和股票市场的非流动性显著正相关(0.2733);股票市场的波动率和本市场的非流动性显著负相关(-0.1263);股票市场的波动率和债券市场的非流动性显著正相关(0.4968);两个市场的非流动性显著负相关(-0.4687)。这些结果表明我国两个市场之间有较为显著的联动性,值得进一步对溢出效应进行研究探讨。

(三) VAR 估计结果分析: 市场变量

我们先对非流动性指标和市场变量做 VAR 分析。由于不涉及宏观变量,我们使用周数据。表 2 给出了不同变量之间 Granger-causality 检验结果。这里零假设为:变量 i 不是变量 j 的 Granger 原因。如果变量 i 的滞后项系数在变量 j 为因变量的回归等式里显著区别于零,就拒绝零假设。"*"的个数表示该系数在不同的置信水平上显著。

表 2 的右下角是两个市场非流动性的互动关系。首先,两个市场存在显著的双向因果关系。一个市场非流动性的上升预示并导致另一个市场非流动性的下降。这个发现是对曾志坚和罗长青(2008)结果的补充。和 Goyenko and Ukhov(2009)的发现基本相一致。

其次,一个市场波动率是另一个市场非流动性的 Granger 原因,即一方波动率的上升预示着另一方非流动性的上升。这个发现进一步确认了表 2 中波动率和另一方市场非流动性的正相关性。我们给出直觉的描述是:由于宏观变量或者市场内部环境发生改变而导致股市流动性上升时,股票交易量会因为较低的交易成本而上升,股票价格也会因为频繁的交易产生较大的波动;由于 flight-to-liquidity 的投资心态,资金从债券市场流入股市,债券市场交易量减少并降低债券市场的流动性。

我们还发现股票收益率是债券市场非流动性的 Granger 原因。由于股票市场显著的杠杆效应,其收益率的升高预示着波动率的下降,根据上面的分析,这会进一步导致债券市场非流动性的下降。

在我们的模型中收益率的溢出效应是单向的。股票收益率对债券收益率存在 负的溢出效应。美国市场的相关研究有相同的结论。Kwan(1996)发现美国股票 市场收益率领先债券一个星期,而债券不领先于股票。另一个重要的发现是两个市 场的非流动性对债券收益率都有预测作用,这个发现为动态调整投资组合提供理论 依据。

Granger 因果检验只是说明在每个等式里变量 i 对于变量 j 的因果关系,而非 VAR 模型整体所隐含的互动关系。为了考察变量之间互动的更为清晰的方法是脉冲反应函数。脉冲反应函数用于衡量来自变量 i 的随机扰动项的一个标准差冲击对

变量j当前和未来取值的影响。由传统的 Cholesky 分解而得出的脉冲结果会依赖于变量在 VAR 系统中的排序。为了避免此性质,我们采用 Pesaran and Shin(1996)的广义脉冲反应函数。

图 2 表示债券非流动性当 6 个变量各产生一个标准差新信息时的脉冲反应函数。我们列示了从发生冲击后的+1 周到未来+50 周内的反应。首先,所有的新信息的影响都不是永久持续的,会减弱并消失。债券非流动性对股票市场非流动性的一个标准差新信息是负向的反应,既流动性上升。对于自身市场的收益率和波动性的新信息的反应相对较小;对股票市场波动性的一个标准差新信息有正向的反应,即流动性下降;对股票市场收益率的一个标准差新信息有负向的反应。

图 3 表示股票非流动性的脉冲反应函数。可以看到股票非流动性对来自任何一个变量的新信息的反应程度都远远大于债券的非流动性。这表明股票市场更为敏感。对自身市场非流动性的一个标准差新信息,股票非流动性在 1 周内上升了 0.04个标准差;债券市场非流动性的上升预示股票市场非流动性的降低,降低程度在第 6 周达到最大;自身市场的收益率的上升预示其非流动性的降低,在第 2 周降低了 0.01个标准差;对来自债券收益率的一个标准差的冲击,在前两周内股票非流动性升高,但之后非流动性开始降低并在第 5 周达到最低;债券市场波动率的上升对股票市场非流动性有正的影响,股票非流动性在第 3 周升至最高;股票市场自身波动性的上升预示其非流动性先上升 0.01 个标准差,随后很快回落并在 3 周后降低约 0.06 个标准差。

总体来说,我们证明了一个市场的流动性对另一个市场的流动性有预测作用,确立了两种金融资产之间流动性的溢出效应。

(四) VAR 估计结果分析: 宏观变量

利率,货币量,通货膨胀作为重要的调节工具在一定时期内较明显的趋势会 影响投资者对未来整体经济及金融资产收益的预期,从而促使投资者改变投资策 略,导致金融资产市场变量的变化以及溢出效应的产生。因此我们考察宏观变量对 两个市场非流动性的影响。我们主要从三个方面选择宏观变量:货币政策,利息 率,和通货膨胀率。货币政策可以具化为货币流动性过剩衡量指标。一个通用的指标是 M₂ /GDP,因为它提供了货币总量相对于经济总量的信息。利息率(IR)采用银行间拆借利率。它能够及时反应金融体系"头寸"或"银根"的松紧,能灵敏及时地反应市场上货币资金的供求状况,因而可以作为货币市场的基准利率。通货膨胀率使用居民消费价格指数(CPI)。

我们采用宏观变量从 2003 年 3 月至 2008 年 12 月的月度数据。GDP 的月度数据是将季度数据按照工业增加值的月度数据来分摊到每个月。流动性过剩指标是用当月的 M2 比当月 GDP 总量来计算。由于 CPI 和 M_2 /GDP 不能拒绝不存在单位根的零假设,我们对其取对数并差分以保证 VAR 模型的稳定性。根据 LR 检验和Schwarz Bayesian Information Criterion,使用月度数据 VAR 模型的滞后阶数 K=3。

我们着重研究以下两方面: 1) 宏观变量对两个市场流动性的总影响; 2) 宏观变量的影响是如何由一个市场溢出到另一个市场的,即间接影响。首先,使用月度数据的 VAR 模型的估计结果和使用周数据基本一致。具体表现为: 1) 两个市场的非流动性互为 Granger 原因; 2) 一个市场的波动率是另一个市场非流动性的 Granger 原因; 3) 股票市场收益率是债券市场非流动性的 Granger 原因。除此之外,我们发现基准利率是债券非流动性的 Granger 原因;流动性过剩是股票市场非流动性的 Granger 原因。我们进一步观察两个市场非流动性对宏观变量的脉冲反应函数。

图 4 中的所有的实线表示了市场的非流动性对于三个宏观变量发生一个标准差新息的脉冲反应。图 4a 和图 4b 的实线表现当利率升高时,两个市场非流动性的变化情况。首先,利率的升高会导致当期国债价格的降低和国债到期收益的上升,这会促进国债市场的流动性;另一方面,利率升高导致通货紧缩从而降低两个市场的流动性。所以利率的升高对国债市场流动性的影响的双向的。图 4a 中债券市场流动性在第 2 和第 3 期里有明显上升趋势;自第 4 期开始,由于通货紧缩导致投资减少,流动性开始下降,直到第 10 期末,债券市场流动性都低于最初水平;10 期后,通货紧缩的影响减弱,国债市场流动性上升并一直高于最初水平。图 4b 里,由于股票市场非流动性只受到单方向的影响,即通货紧缩的影响,股票市场流动性总体表现为单纯的下降。

图 4c 和 4d 的实线是两个市场的非流动性对货币流动性过剩产生新息时的脉冲反应。可以看到,当货币政策较为宽松时,股票市场流动性在前 5 期内有较为明显的提升。债券市场流动性对于货币政策的反应在前 3 期内处于上下波动状态;直到第 5 期起随着股票流动性的逐渐平稳,债券市场流动性有一定的升高。这个结果和表 2 的货币流动性过剩是股票非流动性的 Granger 原因相一致。

图 4e 和 4f 的实线是两个市场的非流动性对通货膨胀指数产生新息时的脉冲反应。首先,通货膨胀的增长率升高往往伴随着宽松的货币政策,这会导致股票市场流动性的上升;另一方面,在较高的通胀预期下,相对于较低的利率,投资人为避免财富的迅速贬值会在股票市场进行更为活跃的投资以避险,从而减少了对债券的投资,导致债券市场流动性的下降。

为了研究宏观变量的冲击是如何在两个市场之间传导或溢出的,我们对 VAR 加入限制条件进行再估计并求间接的脉冲反应方程。具体方法为:如果我们求宏观变量 *i* 产生的新息对股票市场非流动性的间接影响,我们对股票非流动性的等式里 所有宏观变量 *i* 滞后项的系数以及 VOLS,RETS,和 ILLIQ_S 的滞后项系数限制 为零,这样可以隔离宏观变量 *i* 对股票市场非流动性的直接作用,只留下来自债券市场的间接作用。限制后的脉冲反应函数表示当 *i* 发生一个标准差变动时,股票非流动性如何对来自债券市场的间接的冲击发生反应。为了便于比较,我们把间接的脉冲反应函数用虚线表示在图 4 里。如果虚实两条线比较接近,说明来自另一个市场的间接影响占主体,而直接影响较小;如果虚线接近 0 水平线,说明直接影响是主体而间接影响较小;如果虚实两条线偏离较大,说明两方面影响都较强。

总体而言,在图 4 中的虚实两条线的走势呈正相关。图 4a 中当利息率上升时,直接作用是货币紧缩导致对债券的需求下降从而流动性降低;而间接作用是债券以低的价格吸引来股票市场的资金,从而债券流动性上升。总反应的趋势取决于两股力量的对比。可以看出,在前 3 期间接作用较强,流动性上升;从第 4 期至11 期,间接作用相对较弱,从而流动性下降;11 期后间接作用相对较强所以流动性上升。在图 4b 中,当利率上升时,对股票市场流动性在初期的影响主要来自于债券市场:高的利率会吸引资金从股票市场流入债券市场,因而导致股票市场流动

性的下降。随后间接作用的成份逐渐降低,主要是由于货币紧缩导致股票市场流动性水平仍较最初下降。

在图 4c 和图 4d 中,当货币政策变化时,股票市场上同时受到直接和间接的影响:一方面宽松的货币政策会导致资金流入股票市场,另一方面股票市场的上升会从债券市场吸引更多的资金。债券市场主要受到来自股票市场的间接影响:即股票市场会从债券市场吸引资金流出。在两个市场中,间接的脉冲反应曲线大都在总脉冲反应曲线之上,说明另一市场构成了强劲的竞争力量来吸引资金流出,间接的构成使各自市场流动性下降的力量。

图 4e 中,对于通货膨胀的上升,债券市场流动性在初期受来自股票市场的间接影响较小,其较低的市场流动性主要是受到伴随通货膨胀的低利率的影响。12 期之后,债券市场流动性主要受到股票市场的传导。在通货膨胀的预期下,避险资金从债券市场转移到预期收益率较高的股票市场,这种传导作用也是图 4f 中股票市场流动性上升的主要原因。

总之,宏观变量对股票和债券市场的流动性有两个影响渠道:直接影响和通过另一个市场的传导的间接影响。我们发现:当宏观变量发生变化时,两个市场都会受到直接和间接影响;尤其当利息率和货币量产生新息或者发生冲击时,股票和债券市场流动性在早期多受到来自另一个市场的间接影响,而随后直接作用才相对明显。这更印证了我们之前的发现:两个市场之间有较强的溢出效应。宏观变量对股票和债券市场流动性的直接作用和间接作用是交互动态发生的,不存在某一种作用处于绝对优势的状况。

四 结论

我们研究了股票市场和债券市场从 2003 年 3 月至 2008 年 12 月期间的流动性的领先滞后关系。我们的分析主要分为两部分。第一部分使用周度数据发现在控制住收益率和波动率等市场变量下,股票和债券市场之间流动性存在显著的领先滞后关系。并且非流动性之间互为因果关系。此外,我们还发现市场波动率之间也互为因果关系。

第二部分主要研究宏观变量对两个市场流动性的影响。这种影响可以分为直接影响和间接影响两个部分。直接影响指新信息通过影响股票和债券的价格,或者通过对货币供应量的调整而影响各个市场的流动性,它对两个市场流动性的作用往往是同方向的。而间接作用是投资者鉴于预期的改变而进行投资组合的调整时,从另一个市场传导过来的影响,或者称"flight-to-quality"现象,它可以和直接作用方向相反。宏观变量最终的综合影响风向和水平取决于两种影响的力量对比。总体上综合的影响与我们的经济直觉相一致:利率的上升导致股票市场流动性的下降,而对债券市场流动性的影响是双向的;货币供应量的上升导致股票流动性的上升;通货膨胀的增长导致股票流动性的上升,而债券市场流动性相应的下降。

另一个重要的发现是当宏观变量发生改变的初期,由于投资者积极调整投资 策略,间接作用的效果较强;但随着时间的延长而逐渐减弱,在后期占主导地位的 是直接作用。

本篇文章还存在一些不完善之处有待进一步挖掘。由于我国债券市场发展较弱,交易所交易的国债数量较少,因而数据量较小。在下一步的研究中,可以扩大数据范围到深圳交易所数据,央行票据和公司债;文章还发现两个市场的非流动性对债券收益率都有预测作用,我们可以进一步量化研究这个发现对动态调整投资组合的意义。

表 1 非流动性和市场变量周数据的相关性

	VOLB	VOLS	RETB	RETS	ILLIQ_B	ILLIQ_S
VOLB	1					
VOLS	-0.0235	1				
RETB	-0.1977^{***}	0. 1302***	1			
RETS	-0.0990^{**}	-0.0542	0.0135	1		
ILLIQ_B	-0.0135	0. 4968***	0.0241	-0.0987^{**}	1	
ILLIQ_S	0. 2734***	-0 . 1263**	0. 1244***	-0.1177^{***}	-0.4687^{***}	1

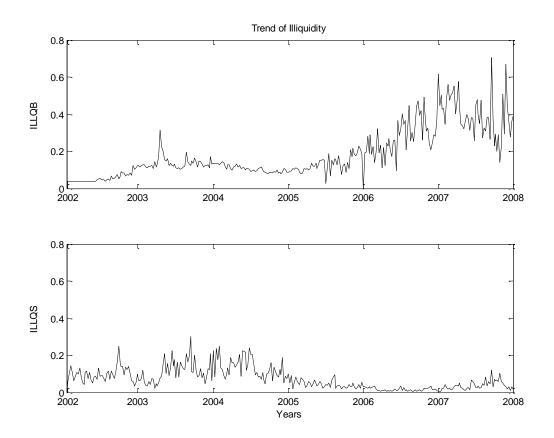

注:表 1 展示了非流动性和其他市场变量周度数据的相关性。RET 是一周内的日收益率的平均值,VOL 是日收益率在一周内的波动率。债券的市场变量采用中信标普指数来计算,股票的市场变量采用上证指数来计算。*,**,***分别表示相关性在 1%,5%,和 10%的水平上显著。数据来源:锐思数据库(www.resset.cn)

表 2 周数据 VAR 模型的 Granger 因果检验

i/j	VOLB	VOLS	RETB	RETS	ILLIQ_B	ILLIQ_S
VOLB		-6.261E-01	3.641E-02	-2.191E-01	-6.195E-02	5.126E+00 (**)
VOLS	-1.218E-03		-2.922E-03	3.389E-02	1.876E-02 (***)	1.236E+00 (***)
RETB	-2.493E-01 (***)	2.215E-01		-6.233E-02	-3.412E-02	7.686E-01
RETS	-3.512E-03	-1.372E-01 (***)	-8.022E-03 (*)		-8.750E-03 (**)	-9.429E- 01 (***) -
ILLIQ_B	9.676E-03	2.530E+00 (***)	9.792E-02 (**)	-5.782E-01		3.533E+00 (**)
ILLIQ_S	2.093E-03 (***)	-9.915E-03	2.402E-03 (***)	-4.510E-03	-3.154E-03 (***)	

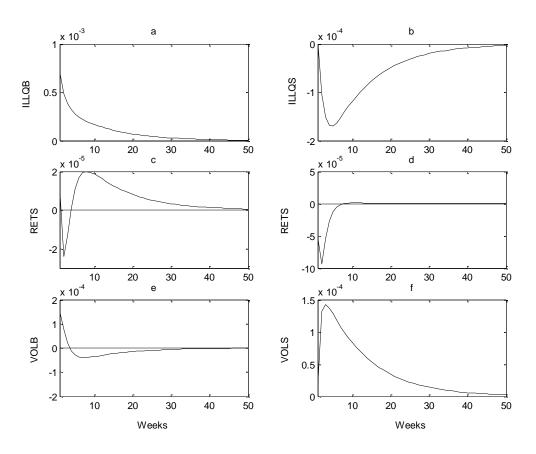

注: 表中的数字是以行变量作为内生变量,列变量的滞后项作为自变量的 VAR 模型的估计参数。 零假设是列变量不是行变量的 Granger 原因; *, **和***分别表示能够在 10%, 5%和 1%的置信水平上拒绝原假设。RETB 是用中信标普指数计算的债券市场日收益率的周平均; RETS 是用上证指数来计算股票市场日收益率的周平均; VOLB 和 VOLS 代表两个市场的在一周内的日收益率的波动率; 数据期间从 2003 年 3 月至 2008 年 12 月。数据来源: 锐思数据库(www.resset.cn)

图 1 非流动性走势

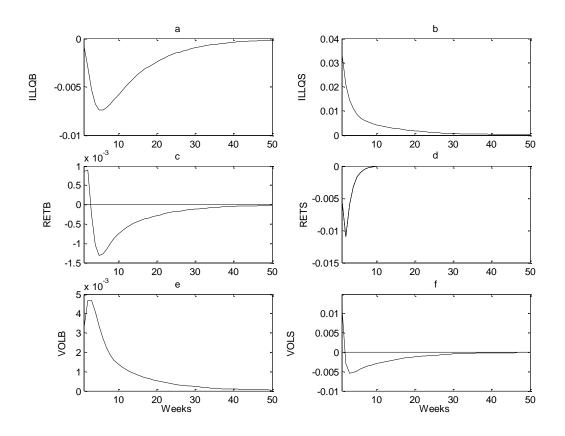

注:图1展示了债券和股票市场非流动性自2002至2008年的走势。股票市场的非流动性来自Amihud(2002)定义的基于价格影响的流动性衡量方法;债券市场的非流动性使用比例报价价差。数据来源:锐思数据库(www.resset.cn)

图 2 债券非流动性的脉冲反应函数

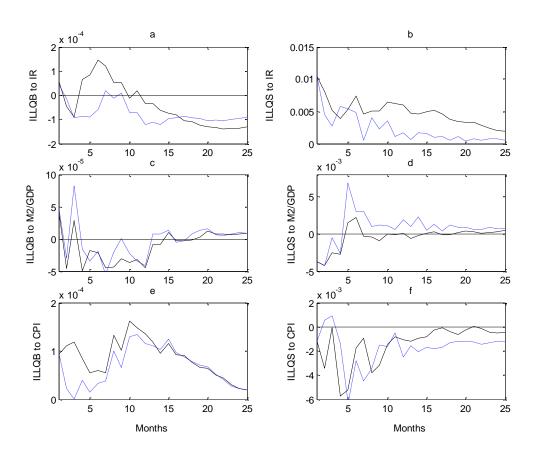

注:图 2 展示了当 6 个变量各产生一个标准差新信息时,债券市场非流动性的脉冲反应函数。图中列示了从发生冲击后的+1 周到未来+50 周内债券市场非流动性的反应。

图 3 股票非流动性的脉冲反应函数

注:图 3 展示了当 6 个变量各产生一个标准差新信息时,股票市场非流动性的脉冲反应函数。图中列示了从发生冲击后的+1 周到未来+50 周内股票市场非流动性的反应。

图 4 债券和股票非流动性对宏观变量的脉冲反应函数

注:图 4 中的实线表示当三个宏观变量各产生一个标准差新信息时,债券和股票市场非流动性的脉冲反应函数;虚线则表示两个市场的非流动性对宏观变量的间接冲击的脉冲反应函数。图中列示了从发生冲击后的+1 月到未来+24 月内债券和股票市场非流动性的反应。

参考文献

- [1] 孙培源,杨朝军,流动性,交易活动与买卖价差,上海管理科学,2002第3期,第26-28页
- [2] 杨祖艳,货币流动性过剩的衡量方法:指标比较和选取研究,金融理论与实践,2009第9期,第18-22页
- [3] 王璐,中国股市和债市溢出效应影响因素的数量研究,金融观察,2008 第 8 期,第 34-39 页
- [4] 王璐,庞皓,中国股市和债市波动的溢出效应—基于交易所和银行间市场的实证研究,金融论坛,2008第4期,第9-13页
- [5] 曾志坚, 江州, 关于我国股票市场与债券市场收益率联动性的实证研究, 当 代财经, 2007 第 9 期, 第 58-64 页
- [6] 曾志坚,罗长青,股票与债券市场流动性联动的实证研究,财经理论与实践,2008第4期,第45-49页
- [7] Amihud, Y., Illiquidity and Stock Returns: Cross-Section and Time-Series Effects, Journal of Financial Markets, 2002 (5), 31-56
- [8] Chordia, T., A. Sarkar, and A. Subrahmanyam, An Empirical Analysis of Stock and Bond Market Liquidity, Review of Financial Studies, 2005 (18), 85-129
- [9] Chordia, T., R. Roll, and A. Subrahmanyam, Market Liquidity and Trading Activity, Journal of Finance, 2001 (56), 401-530
- [10] Fleming, J., C. Kirby, and B. Ostdiek, Information and Volatility Linkages in the Stock, Bond, and Money Markets, Journal of Financial Economics, 1 998 (49), 111-137
- [11] Fleming, M., and E. Remolona, What Moves the Bond Market? Economics Policy Review, 1997 (3), 31-50
- [12] Goenko, Y., and D. Ukhov, Stock and Bond Market Liquidity: A Long-Run Empirical Analysis, Journal of Financial and Quantitative Analysis, 2009 (44), 189-212
- [13] Goetzmann, W., and M. Massa, Daily Momentum and Contrarian Behavior of Index Fund Investors, Journal of Financial and Quantitative Analysis, 2002 (37), 375-389

- [14] Hasbrouck, J., Trading Costs and Returns for U.S. Equities: The Evidence from Daily Data, Working Paper, New York University, 2006
- [15] Kwan, Simon H., Firm-specific information and the correlation between individual stocks and bonds, Journal of Financial Economics, 1996 (40), 63-80
- [16] Longstaff, F. A., The Flight-to-Liquidity Premium in U.S. Treasury Bond Prices, Journal of Business, 2004 (77), 511-526
- [17] O'Hara, M., and G. Oldfield, The Microeconomics of Market Making, Journal of Financial and Quantitative Analysis, 1986 (21), 361-376
- [18] Pesaran, M.H., and Y. Shin, Cointegration and Speed of Convergence to Equilibrium, Journal of Econometrics, 1996 (71), 117-143

Stock and Bond Market Liquidity: The Spillover Effects

Yintian Wang Jiyoung Moon School of Economics and Management, Tsinghua University

March 2010

Abstract This paper establishes liquidity linkage between stock and government bond markets in China. There is a lead-lag relationship between illiquidity of the two markets and bi-drectional Granger causality. The effect of stock illiquidity on bond illiquidity is consistent with flight-to-quality or flight-to-liquidity episodes. Shocks to the macro environment impact illiquidity. Moreover, the shocks mostly are transferred to one of the markets through the other market, which acts as a channel. The paper provides important evidence of illiquidity integration between stock and bond markets.

Key words Illiquidity, Spillover effect, Macroeconomic variables, Stock market, Bond market

21