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GARCH Option Pricing Models, the CBOE VIX and

Variance Risk Premium

Abstract

In this paper, we derive the corresponding implied VIX formulas under the locally risk-

neutral valuation relationship proposed by Duan (1995) when various forms of GARCH

model are proposed for S&P 500 index. The empirical study shows that the GARCH

implied VIX is consistently and significantly lower than the CBOE VIX for all kinds of

GARCH model investigated. Moreover, the magnitude of the difference suggests that the

GARCH option pricing model is not capable of capturing the variance premium, which

indicates the incompleteness of the GARCH option pricing under the locally risk-neutral

valuation relationship. The source of this kind of incompleteness is then theoretically ana-

lyzed. It is shown that the framework of GARCH option pricing model fails to incorporate

the price of volatility risk or variance premium.
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1 Introduction

Finance literature has put much effort on studying the premia that the investors require

for compensating various risks in financial market, especially the equity risk premium for

price risk(volatility). However, instead of a constant volatility assumed in the Black-Scholes

framework, a lot of research has confirmed that the volatility itself is time-varying, which

is termed volatility risk. Many stochastic volatility models and various GARCH models go

along this line.

Then what the finance literature concerns is whether this volatility risk is priced and

compensated in financial market. One of the possible rationales for the existence of volatil-

ity risk premium is the negative correlation between the volatility and the index, which

has been verified in many literature. In the context of asset pricing theory, the source of

risk is the correlation with the market portfolio, aggregate consumption or pricing kernel.

Theoretically, the negative correlation between volatility and index suggests a negative

risk premium. If so, the premia required by investors should be reflected on the prices of

volatility-dependent assets such as options and volatility products. The pursue of empirical

evidence generally proceeds in two directions. One is to study the phenomenon that the

implied volatility of options is higher than the realized volatility. Various delta-neutral

portfolios of option are constructed to test whether significant gains or losses would be pro-

duced. Another one is to investigate the difference between the variance swap rate and the

realized variance, which is coined variance premium. Variance swap rate, the risk-neutral

expectation of the future variance, can be replicated with European options(See Demeterfi,

Derman, Kamal and Zou, 1999; Carr and Wu, 2009). Methodologies for the calculating of

a model-free realized variance have also been developed(see Andersen, 2008).

Since 1980s, the option pricing models with stochastic volatility had introduced the

market price of volatility risk when changing from physical probability measure to risk-
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neutral measure. These papers include Wiggins (1987), Johnson and Shanno (1987), Hull

and White (1987), Scott (1987) and Heston (1993). However, they set the market price

of volatility risk either to zero or a constant and discussed little about the size, sign or

dynamics of this parameter.

Since the beginning of this century, the evidence of the existence of volatility risk pre-

mium have been well documented. Coval and Shumway (2001) studied the expected option

return under the framework of the classic asset pricing theory. They shown that the zero-

beta, at the money straddles which are in long positions of volatility suffer from average

weekly losses of about three percent. Bakshi and Kapadia (2003) constructed a corre-

spondence between the sign and magnitude of the volatility risk premium and the mean

delta-hedged portfolio returns. Their empirical results indicated a negative market volatil-

ity risk premium. Carr and Wu (2009) calculated the variance premia for several stock

market indexes through the replication with options. Average negative variance premium

was shown.

The dynamics and driving forces of variance premium are studied in recent literature.

Vilkov (2008) used the synthetic variance swap returns to approximate the variance risk

premium and studied the dynamics and cross-sectional properties of variance premia em-

bedded in index options and individual stock options. Todorov (2009) studied variance risk

in terms of stochastic volatility and jumps. Model-free realized variance and realized jumps

are constructed using high-frequency data. He found that price jumps play an important

role in explaining the variance risk premium. Specifically, the estimated variance risk pre-

mium increases after a big market jump and slowly reverts to its long-run mean thereafter.

Eraker (2008) captured the volatility premium and the large negative correlation between

shocks to volatility and stock price with a general equilibrium based on long-run risk.

In this paper, we investigate whether the GARCH option pricing model can cap-

ture the variance premium. Since the seminal autoregressive conditional heteroscedas-
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ticity(ARCH) model of Engle (1982) and the generalized autoregressive conditional het-

eroscedasticity(GARCH) model of Bollerslev (1986), the GARCH model have attracted

huge attention from the academics and practitioners and have been intensively used to

model the financial times series. This is mostly because they can capture the volatility

clustering and fat tails which are typical properties of the financial time series. The family

of GARCH model has also been enriched to capture the stylized fact that the negative

returns have higher impact on the volatility than the positive ones, which is called leverage

effect. This class of GARCH models includes the exponential GARCH (EGARCH) of Nel-

son (1991), the threshold GARCH (TGARCH) of Glosten, Jagannathan and Runkle (1993)

and the non-linear asymmetric GARCH (AGARCH) of Engle and Ng (1993) and the like.

Engle and Lee (1993) introduced the component GARCH (CGARCH) which separates the

conditional variance into a transitory component and a permanent component.

Duan (1995) pioneered in employing the GARCH model in the option pricing theory.

He put forward an equilibrium argument that the options can be priced under a locally

risk-neutral valuation relationship(LRNVR) with some assumption on the utility function

when the price of the underlying asset follows a GARCH process. Kallsen and Taqqu

(1998) considered a broad class of ARCH-type models embedded into a continuous-time

framework and derived the same result by a no-arbitrage argument. The GARCH option

pricing model has some linage with those bivariate diffusion option pricing models. Duan

(1996,1997) showed that most variants of GARCH model mentioned above converge to the

bivariate diffusion processes commonly used for modeling the stochastic volatility. Ritchken

and Trevor (1999) developed a lattice algorithm that is applicable for option pricing under

both GARCH models and bivariate diffusions. We will further discuss this limiting property

in this paper. We find that this limiting process is somewhat pseudo in the sense that the

diffusion limit of GARCH models is not identical with the true bivariate diffusion process.

To study the variance premium captured by GARCH option pricing model, we first
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calculate the GARCH implied VIX. VIX is the CBOE listed volatility index, which is

updated in 2004 and reflects the expectation of the volatility of S&P 500 index over the

next 30 calendar days. Demeterfi et al. (1999) showed that the squared VIX is actually

the variance swap rate and can be replicated with portfolio of options written on S&P

500 index. In this paper, GARCH(1,1) and four other variants of GARCH(1,1) model are

proposed for daily log-return of S&P 500 index. we then calculate the (squared)VIX as

the risk-neutral expectation of the average variance over the next 22 trading days under

the LRNVR proposed by Duan (1995). The VIX formulas for the five different GARCH

models are derived.

We then compare the GARCH implied VIX with the CBOE VIX. We find that the

GARCH implied VIX is significantly and consistently lower than the CBOE VIX for all

the GARCH models investigated. The difference is around 3.6 which is consistent with

the empirical evidence of the size of volatility premium. Thus, the GARCH option pricing

model nearly does not capture any volatility premium or variance premium.

The source of this kind of incompleteness is then theoretically analyzed. Three argu-

ments regarding to the diffusion limit of GARCH model and the change of probability

measure from physical measure to locally risk neutral valuation relationship are given. It is

shown that the framework of GARCH option pricing model fails to incorporate the price of

volatility risk or variance premium. Thus, a new kind of risk neutral measure for GARCH

option pricing model is called for.

The paper is constructed as follows. In Section 1 we review the change of measure

for GARCH(p,q) model from the physical measure to the LRNVR of Duan (1995). In

Section 2 we first propose the GARCH(1,1) for modeling S&P 500 index and derive out the

VIX formula under LRNVR. Then we extend the linear GARCH(1,1) to other variants of

GARCH(1,1) model including EGARCH, TGARCH, AGARCH and CGARCH, and give

the VIX formulas, respectively. In Section 3 we estimate these GARCH models using the
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time series data of S&P 500 and compute the GARCH implied VIX. A comparison of the

GARCH implied VIX and the CBOE VIX is then conducted. In Section 4 we theoretically

investigate the locally risk neutral valuation relationship and the diffusion limit of GARCH

model. The failure of the GARCH option pricing model to incorporate the price of volatility

risk is analyzed. In Section 5 we conclude.

2 Theoretical Results on GARCH Implied VIX

2.1 GARCH Option Pricing Models

Duan (1995) utilized a linear GARCH process for modeling the underlying asset and pricing

the options written on it. In that paper, the return of the asset in each period is modeled

to follow a conditional lognormal distribution under the physical measure 𝑃 ,

ln(
𝑋𝑡

𝑋𝑡−1

) = 𝑟 + 𝜆
√

ℎ𝑡 − 1

2
ℎ𝑡 + 𝜖𝑡, (1)

where 𝑋𝑡 is the price of the asset, r is constant interest rate and 𝜆 is the risk premium; 𝜖𝑡

follows a GARCH(𝑝, 𝑞) process

𝜖𝑡 ∣ 𝜙𝑡−1 ∼ 𝑁(0, ℎ𝑡) under measure 𝑃 ,

ℎ𝑡 = 𝛼0 +

𝑞∑
𝑖=1

𝛼𝑖𝜖
2
𝑡−𝑖 +

𝑝∑
𝑖=1

𝛽𝑖ℎ𝑡−𝑖, (2)

With the assumptions made on utility function and aggregated consumption growth,

Duan (1995) proposed a new locally risk neutral valuation relationship, 𝑄, under which

ln(
𝑋𝑡

𝑋𝑡−1

) = 𝑟 − 1

2
ℎ𝑡 + 𝜉𝑡, (3)

and

𝜉𝑡 ∣ 𝜙𝑡−1 ∼ 𝑁(0, ℎ𝑡),

ℎ𝑡 = 𝛼0 +

𝑞∑
𝑖=1

𝛼𝑖(𝜉𝑡−𝑖 − 𝜆
√
ℎ𝑡−𝑖)

2 +

𝑝∑
𝑖=1

𝛽𝑖ℎ𝑡−𝑖
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2.2 GARCH Implied VIX

VIX reflects investors’ expectation of the volatility of S&P 500 in the following 30 calender

days, that is

(
𝑉 𝐼𝑋𝑡

100
)2 = 𝐸𝑄

𝑡 [
1

𝜏0

∫ 𝑡+𝜏0

𝑡

ℎ̃𝑠 𝑑𝑠] (4)

where 𝜏0 = 30 and ℎ̃𝑠 is the instantaneous annualized variance of the rate of return of S&P

500. In this paper, we calculate VIX as a expected arithmetic average of the variance in

the 𝑛 subperiods of the following 30 calendar days. That is

(
𝑉 𝐼𝑋𝑡

100
)2 =

1

𝑛

𝑛∑
𝑘=1

𝐸𝑄
𝑡 [ℎ̃𝑡+

𝜏0𝑘
𝑛

] (5)

Especially, we will use data with daily frequency, that is 𝜏0 = 𝑛, then

𝑉𝑡 =
1

𝑛

𝑛∑
𝑘=1

𝐸𝑄
𝑡 [ℎ𝑡+𝑘] (6)

where 𝑉𝑡 =
1

252
(𝑉 𝐼𝑋𝑡

100
)2 is defined as a proxy for 𝑉 𝐼𝑋𝑡 in terms of daily variance.

The conditional mean of future variance can be calculated under various GARCH mod-

els. We now consider the GARCH(1,1), EGARCH(1,1), TGARCH(1,1), AGARCH(1,1)

and Component GARCH(1,1) models and give their corresponding VIX formulas.

Proposition 1 If S&P 500 follows a GARCH(1,1) process, then under the locally risk

neutral valuation relationship 𝑄 proposed by Duan (1995), the implied VIX is a linear

function of the conditional variance of the next period,

𝑉𝑡 = 𝐴+𝐵ℎ𝑡+1 (7)

where

𝐴 =
𝛼0

1− 𝜂
(1−𝐵),

𝐵 =
1− 𝜂𝑛

𝑛(1− 𝜂)
,

𝜂 = 𝛼1(1 + 𝜆2) + 𝛽1.
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See the appendix for proof.

Given the process that the conditional variance follows, we know that a linear transfor-

mation of 𝑉𝑡 will follow a stochastic process under the physical measure,

𝑉𝑡 = 𝛼0 + 𝛼1𝜖
2
𝑡 + 𝛽1𝑉𝑡−1, (8)

and

𝜖𝑡 ∣ 𝜙𝑡−1 ∼ 𝑁(0, 𝑉𝑡−1) under measure 𝑃,

where 𝑉𝑡 = (𝑉𝑡 − 𝐴)/𝐵. We define 𝑉𝑡 = 𝑓(𝑉 𝐼𝑋𝑡) as a standardizing function.

Consider the EGARCH(1,1) mdoel:

lnℎ𝑡 = 𝛼0 + 𝛽1 lnℎ𝑡−1 + 𝑔(𝑧𝑡−1), (9)

𝑔(𝑧𝑡−1) = 𝛼1𝑧𝑡−1 + 𝛿(∣𝑧𝑡−1∣ −
√

2/𝜋). (10)

where 𝑧𝑡 = 𝜖𝑡/
√
ℎ𝑡 and the covariance stationary condition is ∣𝛽1∣ < 1. Following the

GARCH option pricing model in Duan (1995), we can apply the locally risk neutral valu-

ation relationship onto the EGARCH(1,1) model,

lnℎ𝑡 = 𝛼0 + 𝛽1 lnℎ𝑡−1 + 𝑔(𝑢𝑡−1 − 𝜆), (11)

𝑔(𝑢𝑡−1 − 𝜆) = 𝛼1(𝑢𝑡−1 − 𝜆) + 𝛿(∣𝑢𝑡−1 − 𝜆∣ −
√

2/𝜋). (12)

where 𝑢𝑡 = 𝜉𝑡/
√
ℎ𝑡.

Proposition 2 If S&P 500 follows an EGARCH(1,1) process, then under the locally risk

neutral valuation relationship 𝑄, the implied VIX formula takes the form of

𝑉𝑡 =
1

𝑛
ℎ𝑡+1(1 +

𝑛∑
𝑗=2

𝑗−2∏
𝑖=0

𝑙𝑖) (13)

with

𝑙𝑖 = 𝑒𝛽
𝑖
1(𝛼0−𝛿

√
2/𝜋)

{
𝑒−𝛽𝑖

1(𝛼1−𝛿)𝜆+
[𝛽𝑖1(𝛼1−𝛿)]2

2 𝑁
[
𝜆− 𝛽𝑖

1(𝛼1 − 𝛿)
]

+ 𝑒−𝛽𝑖
1(𝛼1+𝛿)𝜆+

[𝛽𝑖1(𝛼1+𝛿)]2

2 𝑁
[
𝛽𝑖
1(𝛼1 + 𝛿)− 𝜆

]}
.

(14)
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The proof is in Appendix.

Consider the TGARCH(1,1) mdoel:

ℎ𝑡 = 𝛼0 + 𝛼1𝜖
2
𝑡−1 + 𝜃𝜖2𝑡−11(𝜖𝑡−1 < 0) + 𝛽1ℎ𝑡−1 (15)

where 𝛼0 > 0, 𝛼1 ≥ 0, and 𝛽1 > 0. The covariance stationary condition is 𝛼1 + 𝛽1 +
𝜃
2
< 1.

Under the locally risk neutral valuation relationship 𝑄 proposed by Duan (1995), the

TGARCH(1,1) changes into

ℎ𝑡 = 𝛼0 + 𝛼1(𝜉𝑡−1 − 𝜆
√

ℎ𝑡−1)
2 + 𝜃(𝜉𝑡−1 − 𝜆

√
ℎ𝑡−1)

21(𝜉𝑡−1 − 𝜆
√
ℎ𝑡−1 < 0) + 𝛽1ℎ𝑡−1 (16)

Proposition 3 If S&P 500 follows a TGARCH(1,1) process, then under the locally risk

neutral valuation relationship 𝑄, the implied VIX formula takes the form of

𝑉𝑡 = 𝐶 +𝐷ℎ𝑡+1 (17)

where

𝐶 =
𝛼0

1− 𝜁
(1−𝐷),

𝐷 =
1− 𝜁𝑛

𝑛(1− 𝜁)
,

𝜁 = 𝛼1(1 + 𝜆2) + 𝛽1 + 𝜃
[ 𝜆√

2𝜋
𝑒−

𝜆2

2 + (1 + 𝜆2)𝑁(𝜆)
]
.

See Appendix for details.

Consider the AGARCH(1,1) mdoel:

ℎ𝑡 = 𝛼0 + 𝛼1(𝜖𝑡−1 − 𝜃
√
ℎ𝑡−1)

2 + 𝛽1ℎ𝑡−1 (18)

where 𝛼0 > 0, 𝛼1 ≥ 0, and 𝛽1 > 0. Under the locally risk neutral valuation relationship 𝑄

proposed by Duan (1995), the AGARCH(1,1) changes into

ℎ𝑡 = 𝛼0 + 𝛼1(𝜉𝑡−1 − 𝜆
√

ℎ𝑡−1 − 𝜃
√
ℎ𝑡−1)

2 + 𝛽1ℎ𝑡−1 (19)
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Proposition 4 If S&P 500 follows an AGARCH(1,1) process, then under the locally risk

neutral valuation relationship 𝑄, the implied VIX formula takes the form of

𝑉𝑡 = 𝐸 + 𝐹ℎ𝑡+1 (20)

where

𝐸 =
𝛼0

1− 𝜁
(1− 𝐹 ),

𝐹 =
1− 𝜁𝑛

𝑛(1− 𝜁)
,

𝜁 = 𝛼1

[
1 + (𝜆+ 𝜃)2

]
+ 𝛽1.

See Appendix for details.

Engle and Lee (1993) extended the GARCHmodel to the Component GARCH (CGARCH)

model by decomposing the conditional variance into a transitory component and a perma-

nent component. Consider the component GARCH(1,1) model:

ℎ𝑡 − 𝑞𝑡 = 𝛼1(𝜖
2
𝑡−1 − 𝑞𝑡−1) + 𝛽1(ℎ𝑡−1 − 𝑞𝑡−1), (21)

𝑞𝑡 = 𝛼0 + 𝜌𝑞𝑡−1 + 𝜙(𝜖2𝑡−1 − ℎ𝑡−1). (22)

where 𝛼0 > 0, 𝛼1 0, 𝛽1 > 𝜙 > 0, and 1 > 𝜌 > 𝛼1 + 𝛽1 > 0. In CGARCH model, ℎ𝑡 − 𝑞𝑡 is

the transitory component which shrinks to zero and 𝑞𝑡 is the permanent component which

converges to 𝛼0/(1− 𝜌). Under the locally risk neutral valuation relationship 𝑄 proposed

by Duan (1995), the CGARCH(1,1) changes into

ℎ𝑡 − 𝑞𝑡 = 𝛼1[(𝜉𝑡−1 − 𝜆
√
ℎ𝑡−1)

2 − 𝑞𝑡−1] + 𝛽1(ℎ𝑡−1 − 𝑞𝑡−1), (23)

𝑞𝑡 = 𝛼0 + 𝜌𝑞𝑡−1 + 𝜙[(𝜉𝑡−1 − 𝜆
√
ℎ𝑡−1)

2 − ℎ𝑡−1]. (24)
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Proposition 5 If S&P 500 follows a CGARCH(1,1) process, then under the locally risk

neutral valuation relationship 𝑄, the implied VIX can be computed as a linear function of

the transitory and permanent components of the conditional variance of next period, ℎ𝑡+1

and 𝑞𝑡+1.

See Appendix for proof.

3 Data and Estimation

In this section, we use maximum likelihood method to estimate the GARCH model in the

physical measure with the time series data of the close price of S&P 500 index. The sample

period ranges from Jan 2, 1990 to Aug 10, 2009. We also use the daily 3-month U.S.

Treasury bills(secondary market) rate as the risk-free rate and we get this time series data

from the Federal Reserve web site.

When running the maximum likelihood estimations, we set the initial conditional vari-

ance as the variance of the rate of return of S&P 500 index over the whole time period.

4 Results

With the estimates from maximum likelihood estimations, we can figure out the time series

of conditional variance of S&P 500 index under the GARCH(1,1) model. We then can

calculate the time series of VIX under GARCH model with the GARCH implied VIX

formulas worked out in Section 2. Comparisons of the GARCH implied VIX and CBOE

VIX are conducted for all the five versions of GARCH(1,1) models, and are shown in Figure

1 to Figure 5. The statistics of the GARCH implied VIX, CBOE VIX and their differences

are shown in Table 1. Generally speaking, the derived VIX is highly correlated with the real

VIX, which can seen from the trends in the figures. The correlation coefficients between
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the GARCH implied VIX and CBOE VIX are very high, ranging from 0.92 to 0.94 for

different GARCH models. However, the VIX time series derived from the GARCH model

are lower than the real VIX data. The null hypothesis that the GARCH implied VIX has

the same mean with the CBOE VIX is strongly rejected as the P-value in Table 1 is very

low. The mean errors(CBOE VIX minus GARCH implied VIX) are very close among the

five GARCH model, with the minimum 3.47 of the AGARCH model and maximum 3.78 of

TGARCH model. The EGARCH model gains the minimum mean absolute error of 3.76,

and the TGARCH model has a maximum of 4.08. In terms of root mean squared error,

AGARCH model gets the lowest value of 4.73 and TGARCH model performs worst with a

value of 4.98.

It is important to note that the magnitude of the mean error of between CBOE VIX and

GARCH implied VIX, ranging from 3.47 to 3.78, is nearly consistent with that of variance

premium in standard deviation unit, which is about 3.3. Thus, the GARCH implied VIX

undervalues the CBOE VIX by a amount similar to the variance premium.

5 Discussion

The empirical results show that the GARCH option pricing model can not capture the

variance premium, which indicates the incompleteness of the model. We will illustrate this

point with the case of AGARCH(1,1) model. Under the physical probability measure 𝑃 ,

the model is specified as

ln(
𝑋𝑡

𝑋𝑡−1

) = 𝑟 + 𝜆
√
ℎ𝑡 − 1

2
ℎ𝑡 +

√
ℎ𝑡𝜐𝑡, (25)

ℎ𝑡 = 𝛼0 + 𝛼1ℎ𝑡−1(𝜐𝑡−1 − 𝜃)2 + 𝛽1ℎ𝑡−1, (26)

where 𝜐𝑡 is a standard normal random variable, conditional on the information at time 𝑡-1;

𝛼0 > 0, 𝛼1 ≥ 0, 𝛽1 ≥ 0 and (1 + 𝜃2)𝛼1 − 𝛽1 < 1 for a covariance staionary process. A

positive 𝜃 can capture the negative correlation between the return and conditional variance
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as

𝐶𝑜𝑣𝑃 (𝜐𝑡, ℎ𝑡+1) = −2𝜃𝛼0𝛼1[1− (1 + 𝜃2)𝛼1 − 𝛽1]
−1. (27)

If 𝜃 = 0, this AGARCH model degenerates to a Linear GARCH(1,1) model discussed in

Duan (1995), where the return and conditional variance are not correlated.

Under the LRNVR 𝑄, the prices seem to evolve in a risk neutral world

ln(
𝑋𝑡

𝑋𝑡−1

) = 𝑟 − 1

2
ℎ𝑡 +

√
ℎ𝑡𝜀𝑡, (28)

ℎ𝑡 = 𝛼0 + 𝛼1ℎ𝑡−1(𝜀𝑡−1 − 𝜃∗)2 + 𝛽1ℎ𝑡−1, (29)

where 𝜀𝑡 is a standard normal random variable under LRNVR 𝑄, conditional on the infor-

mation at time 𝑡-1, and 𝜃∗ = 𝜃 + 𝜆.

Duan (1996,1997) studied the diffusion limit of the GARCH model. Divide each time

period(”day”) into n sub-period of width Δ𝑡 = 1/𝑛. For k=1,2,. . . ,n, approximating pro-

cess is constructed as

ln(𝑋
(𝑛)
𝑘𝑠 ) = ln(𝑋

(𝑛)
(𝑡−1)𝑠) + (𝑟 + 𝜆

√
ℎ
(𝑛)
𝑘𝑠 − 1

2
ℎ
(𝑛)
𝑘𝑠 )Δ𝑡+

√
ℎ
(𝑛)
𝑘𝑠

√
Δ𝑡𝜐𝑘, (30)

ℎ
(𝑛)
(𝑘+1)𝑠 − ℎ

(𝑛)
𝑘𝑠 = 𝛼0Δ𝑡+ ℎ

(𝑛)
𝑘𝑠 [𝛼1𝑞 + 𝛽1 − 1]Δ𝑡+ ℎ

(𝑛)
𝑘𝑠 𝛼1

√
Δ𝑡[(𝜐𝑘 − 𝜃)2 − 𝑞], (31)

where 𝜐𝑘, 𝑘 = 1, 2, . . . is a sequence of i.i.d standard normal random variables; 𝑞 = 1 + 𝜃2.

And the corresponding process under the LRNVR 𝑄 is

ln(𝑋
(𝑛)
𝑘𝑠 ) = ln(𝑋

(𝑛)
(𝑡−1)𝑠) + (𝑟 − 1

2
ℎ
(𝑛)
𝑘𝑠 )Δ𝑡+

√
ℎ
(𝑛)
𝑘𝑠

√
Δ𝑡𝜀𝑘, (32)

ℎ
(𝑛)
(𝑘+1)𝑠 − ℎ

(𝑛)
𝑘𝑠 = 𝛼0Δ𝑡+ ℎ

(𝑛)
𝑘𝑠 [𝛼1𝑞 + 𝛽1 − 1]Δ𝑡

+ ℎ
(𝑛)
𝑘𝑠 𝛼1

√
Δ𝑡[(𝜀𝑘 − 𝜃 − 𝜆

√
Δ𝑡)2 − 𝑞],

(33)

where 𝜀𝑘 = 𝜐𝑘+𝜆
√
Δ𝑡, 𝑘 = 1, 2, . . . is a sequence of i.i.d standard normal random variables

under 𝑄.

Duan shows that the limiting diffusion process of the approximating process (33) and
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(34) of AGARCH(1,1) under the physical measure 𝑃 is

𝑑 ln(𝑋𝑡) = (𝑟 + 𝜆
√
ℎ𝑡 − 1

2
ℎ𝑡)𝑑𝑡+

√
ℎ𝑡𝑑𝑊1𝑡, (34)

𝑑ℎ𝑡 = [𝛼0 + (𝛼1𝑞 + 𝛽1 − 1)ℎ𝑡]𝑑𝑡− 2𝜃𝛼1ℎ𝑡𝑑𝑊1𝑡 +
√
2𝛼1ℎ𝑡𝑑𝑊2𝑡, (35)

where 𝑑𝑊1𝑡 and 𝑑𝑊2𝑡 are independent Wiener processes. And the limiting diffusion process

of the approximating process (35) and (36) of AGARCH(1,1) under the LRNVR 𝑄 is

𝑑 ln(𝑋𝑡) = (𝑟 − 1

2
ℎ𝑡)𝑑𝑡+

√
ℎ𝑡𝑑𝑍1𝑡, (36)

𝑑ℎ𝑡 = [𝛼0 + (𝛼1𝑞 + 𝛽1 − 1 + 2𝜆𝛼1𝜃)ℎ𝑡]𝑑𝑡− 2𝜃𝛼1ℎ𝑡𝑑𝑍1𝑡 +
√
2𝛼1ℎ𝑡𝑑𝑍2𝑡, (37)

where 𝑑𝑍1𝑡 and 𝑑𝑍2𝑡 are independent Wiener processes. Particularly, 𝑑𝑍1𝑡 = 𝑑𝑊1𝑡 +

𝜆𝑑𝑡, 𝑑𝑍2𝑡 = 𝑑𝑊2𝑡.

We now put forward three arguments about the locally risk neutral valuation relation-

ship proposed by Duan(1995) and the diffusion limit properties of the GARCH model.

Firstly, the diffusion limit no matter under the physical measure or the LRNVR is not

identical with the traditionally mentioned ”true” bivariate diffusion processes such as Wig-

gins (1987), Johnson and Shanno (1987), Hull and White (1987), Scott (1987) and Heston

(1993). In these models, the innovations in price and volatility are totally independent.

However, the innovations in price and volatility in the limiting diffusion process of GARCH

model still have kinds of linkage though being statistically independent. Under the physical

measure, the item
√
Δ𝑡𝜐𝑘 in the approximating process of (33) converges to the Wiener

process of 𝑑𝑊1𝑡. The last item on the right hand of the approximating process of (34) can

be decomposed as

√
Δ𝑡[(𝜐𝑘 − 𝜃)2 − 𝑞] = −2𝜃

√
Δ𝑡𝜐𝑘 +

√
Δ𝑡(𝜐2

𝑘 − 1). (38)

Comparing it with its diffusion limit in (38), we find that the innovation in the volatility

process,
√
2𝑑𝑊2𝑡, is actually the limit of

√
Δ𝑡(𝜐2

𝑘 − 1), noting that 𝜐2
𝑘 − 1 has mean zero

and variance of 2. However, although 𝜐2
𝑘 − 1 is uncorrelated with 𝜐𝑘, they still have linkage
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through higher moments. For example, 𝐸𝑃 [𝜐2
𝑘 ⋅(𝜐2

𝑘−1)] = 1. Thus, the relationship between

𝑑𝑊1𝑡 and 𝑑𝑊2𝑡 are not the same as that in the common bivariate diffusion models.

Under the LRNVR 𝑄, the item
√
Δ𝑡𝜀𝑘 in the approximating process of (35) converges

to the Wiener process of 𝑑𝑍1𝑡. The last item on the right hand of the approximating process

of (36) can be decomposed as

√
Δ𝑡[(𝜀𝑘−𝜃−𝜆

√
Δ𝑡)2−𝑞] = 2𝜃𝜆Δ𝑡−2𝜃

√
Δ𝑡𝜀𝑘+

√
Δ𝑡(𝜀2𝑘−1)+𝜆2 3

√
(Δ𝑡)2−2𝜆Δ𝑡𝜀𝑘. (39)

As Δ𝑡 tends to zero,
√
Δ𝑡(𝜀2𝑘 − 1) converges to 𝑑𝑍2𝑡, and the last two items disappear

according to Ito’s Lemma. For the same reason above, 𝑑𝑍1𝑡 and 𝑑𝑍2𝑡 are linked though

statistically independent.

Secondly, for the true bivariate diffusion model, a price of volatility risk is usually

introduced to the volatility process when we move from the physical measure to the risk

neutral measure. This is because volatility has its own risk which has to be compensated.

However, the diffusion limit of GARCH model under LRNVR 𝑄 does not reflect this kind

of compensation for volatility risk. Actually, Under the probability measure change from

physical measure to LRNVR 𝑄, the innovation in volatility process is invariant, 𝑑𝑍2𝑡 =

𝑑𝑊2𝑡, as
√
Δ𝑡(𝜀2𝑘 − 1) =

√
Δ𝑡[(𝜐𝑘 + 𝜆

√
Δ𝑡)2 − 1]

=
√
Δ𝑡(𝜐2

𝑘 − 1) + 2𝜆𝜐𝑘Δ𝑡+ 𝜆2 3
√
(Δ𝑡)2.

(40)

The left hand converges to 𝑑𝑍2𝑡 and the right hand converges to 𝑑𝑊2𝑡. The failure of the

diffusion limit to incorporate the price of volatility risk resulted from the inability of the

GARCH option pricing model to account for the volatility risk.

Thirdly, the presence of the equity premium 𝜆 under the LRNVR 𝑄 in the volatility

process of both the GARCH model (34) and its diffusion limit (40) does not represent the

incorporation of variance premium. Consider the linear GARCH(1,1) with 𝜃 = 0. As shown

in the diffusion limit of the volatility process (40)under LRNVR, the item containing equity
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premium 𝜆 will disappear. Some may argue that the variance premium derives from the

negative correlation between the price and volatility, and the absence of variance premium

in linear GARCH is caused since the price and volatility are not correlated as shown in

(30). However, even the price process and the volatility process are not correlated in the

bivariate diffusions, the price of volatility risk will still show up under the risk neutral

measure. Moreover, literatures show that very little of the volatility risk premium can be

explained by the market risk or the correlation of volatility with prices. Instead, It may be

driven by some other risk factors including jump risk. Thus, the equity risk premium does

not simultaneously represent the volatility risk premium.

By now we have theoretically demonstrated that the GARCH option pricing model

under locally risk neutral valuation relationship is not capable of capturing the variance

premium. This suggests the incompleteness of the locally risk neutral valuation relationship

now widely used in GARCH option pricing literatures.

6 Conclusion

In this paper, we follow the GARCH option pricing model of Duan (1995) and calculate

the VIX squared as the expected arithmetic average of the conditional variance over the

next 22 trading days under the locally risk neutral valuation relationship. GARCH implied

VIX formulas are derived for linear GARCH(1,1) and four other extensions of GARCH(1,1)

models.

We use the time series of the close price of S&P 500 index since the launch of VIX on

CBOE to run the maximum likelihood estimation of the GARCH models. The correspond-

ing VIX time series are then calculated. The comparison of these GARCH impied VIX with

the CBOE VIX shows that the GARCH implied VIX is significantly and consistently lower

than the CBOE VIX for all kinds of GARCH model investigated. Moreover, the magnitude
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of the difference is coincident with the empirical variance premium. This indicates that the

GARCH option pricing under LRNVR can not capture the variance premium.

With the case of AGARCH(1,1), we illustrate the reasons that the GARCH option

pricing model fails to incorporate the price of volatility risk compared with the bivariate

diffusion models. Firstly, the diffusion limit of the GARCH model is somewhat tricky

and actually different from the bivariate diffusions. Secondly, the innovation of volatility

is invariant with respect to probability measure change from the physical measure to the

LRNVR. Finally, we point out that the equity risk premium can not serve to capture the

variance premium, which is usually misunderstood in literatures.

The empirical results and the theoretical arguments both indicate that the GARCH

option pricing model under locally risk neutral valuation relationship is not capable of

capturing the variance premium. This suggests that the locally risk neutral valuation

relationship is not complete and kind of fully risk neutral measure for GARCH option

pricing is called for.
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Appendix

Proof of Proposition 1. For 𝑘 > 1,

𝐸𝑄
𝑡 (ℎ𝑡+𝑘) = 𝐸𝑄

𝑡 [𝛼0 + 𝛼1(𝜉𝑡+𝑘−1 − 𝜆
√
ℎ𝑡+𝑘−1)

2 + 𝛽1ℎ𝑡+𝑘−1]

= 𝐸𝑄
𝑡 {𝛼0 + 𝐸𝑄

𝑡+𝑘−2[𝛼1ℎ𝑡+𝑘−1(
𝜉𝑡+𝑘−1√
ℎ𝑡+𝑘−1

− 𝜆)2 + 𝛽1ℎ𝑡+𝑘−1]}

= 𝐸𝑄
𝑡 {𝛼0 + ℎ𝑡+𝑘−1[𝛼1(1 + 𝜆2) + 𝛽1]}

= 𝛼0 + [𝛼1(1 + 𝜆2) + 𝛽1]𝐸
𝑄
𝑡 (ℎ𝑡+𝑘−1),

(41)

and continuing this iterating process, we have

𝐸𝑄
𝑡 (ℎ𝑡+𝑘) = 𝛼0

𝑘−2∑
𝑖=0

[𝛼1(1 + 𝜆2) + 𝛽1]
𝑖 + [𝛼1(1 + 𝜆2) + 𝛽1]

𝑘−1ℎ𝑡+1. (42)

When the forecasting horizon goes to infinity, the conditional expected variance will con-

verge to the unconditional expected variance, 𝛼0/(1 − 𝛼1(1 + 𝜆2) − 𝛽1), and the effect of

the present conditional variance will shrink out.

Substituting this result into equation (6), we get the 𝑉 𝐼𝑋𝑡 as a linear function of the

conditional variance of the next period,

𝑉𝑡 = 𝐴+𝐵ℎ𝑡+1 (43)

where

𝐴 =
𝛼0

1− 𝜂
(1−𝐵),

𝐵 =
1− 𝜂𝑛

𝑛(1− 𝜂)
,

𝜂 = 𝛼1(1 + 𝜆2) + 𝛽1.

Proof of Proposition 2. Under the LRNVR 𝑄, the expectation of the conditional vari-
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ance k periods ahead can be expressed as

𝐸𝑄
𝑡 (ℎ𝑡+𝑘) = 𝑒𝛼0−𝛿

√
2/𝜋𝐸𝑄

𝑡 (ℎ
𝛽1

𝑡+𝑘−1)𝐸
𝑄
𝑡+𝑘−2(𝑒

𝛼1(𝑢𝑡+𝑘−1−𝜆)+𝛿∣𝑢𝑡+𝑘−1−𝜆∣)

= 𝑒𝛼0−𝛿
√

2/𝜋𝐸𝑄
𝑡 (ℎ

𝛽1

𝑡+𝑘−1)

(∫ 𝜆

−∞
𝑒(𝛼1−𝛿)(𝑢𝑡+𝑘−1−𝜆) 1√

2𝜋
𝑒−

𝑢2𝑡+𝑘−1
2 𝑑𝑢𝑡+𝑘−1

+

∫ ∞

𝜆

𝑒(𝛼1+𝛿)(𝑢𝑡+𝑘−1−𝜆) 1√
2𝜋

𝑒−
𝑢2𝑡+𝑘−1

2 𝑑𝑢𝑡+𝑘−1

)
= 𝑒(𝛼0−𝛿

√
2/𝜋)

[
𝑒−(𝛼1−𝛿)𝜆+

(𝛼1−𝛿)2

2 𝑁(𝜆− 𝛼1 + 𝛿)

+ 𝑒−(𝛼1+𝛿)𝜆+
(𝛼1+𝛿)2

2 𝑁(𝛼1 + 𝛿 − 𝜆)
]
𝐸𝑄

𝑡 (ℎ
𝛽1

𝑡+𝑘−1).

(44)

For 0 ≤ 𝑖 ≤ 𝑘 − 2, we have

𝛽𝑖
1 lnℎ𝑡+𝑘−𝑖 = 𝛽𝑖

1(𝛼0−𝛿
√

2/𝜋)+𝛽𝑖+1
1 lnℎ𝑡+𝑘−𝑖−1+𝛽𝑖

1

[
𝛼1(𝑢𝑡+𝑘−𝑖−1−𝜆)+𝛿∣𝑢𝑡+𝑘−𝑖−1−𝜆∣] (45)

Thus,

𝐸𝑄
𝑡 (ℎ

𝛽𝑖
1

𝑡+𝑘−𝑖) = 𝑒𝛽
𝑖
1(𝛼0−𝛿

√
2/𝜋)𝐸𝑄

𝑡

(
ℎ
𝛽𝑖+1
1

𝑡+𝑘−𝑖−1

)
𝐸𝑄

𝑡+𝑘−𝑖−2

{
𝑒𝛽

𝑖
1[𝛼1(𝑢𝑡+𝑘−𝑖−1−𝜆)+𝛿∣𝑢𝑡+𝑘−𝑖−1−𝜆∣]}

= 𝑒𝛽
𝑖
1(𝛼0−𝛿

√
2/𝜋)𝐸𝑄

𝑡

(
ℎ
𝛽𝑖+1
1

𝑡+𝑘−𝑖−1

)(∫ 𝜆

−∞
𝑒𝛽

𝑖
1(𝛼1−𝛿)(𝑢𝑡+𝑘−𝑖−1−𝜆) 1√

2𝜋
𝑒−

𝑢2𝑡+𝑘−𝑖−1
2 𝑑𝑢𝑡+𝑘−𝑖−1

+

∫ ∞

𝜆

𝑒𝛽
𝑖
1(𝛼1+𝛿)(𝑢𝑡+𝑘−𝑖−1−𝜆) 1√

2𝜋
𝑒−

𝑢2𝑡+𝑘−𝑖−1
2 𝑑𝑢𝑡+𝑘−𝑖−1

)
= 𝑒𝛽

𝑖
1(𝛼0−𝛿

√
2/𝜋)

{
𝑒−𝛽𝑖

1(𝛼1−𝛿)𝜆+
[𝛽𝑖1(𝛼1−𝛿)]2

2 𝑁
[
𝜆− 𝛽𝑖

1(𝛼1 − 𝛿)
]

+ 𝑒−𝛽𝑖
1(𝛼1+𝛿)𝜆+

[𝛽𝑖1(𝛼1+𝛿)]2

2 𝑁
[
𝛽𝑖
1(𝛼1 + 𝛿)− 𝜆

]}
𝐸𝑄

𝑡

(
ℎ
𝛽𝑖+1
1

𝑡+𝑘−𝑖−1

)
.

(46)

Denote

𝑙𝑖 = 𝑒𝛽
𝑖
1(𝛼0−𝛿

√
2/𝜋)

{
𝑒−𝛽𝑖

1(𝛼1−𝛿)𝜆+
[𝛽𝑖1(𝛼1−𝛿)]2

2 𝑁
[
𝜆− 𝛽𝑖

1(𝛼1 − 𝛿)
]

+ 𝑒−𝛽𝑖
1(𝛼1+𝛿)𝜆+

[𝛽𝑖1(𝛼1+𝛿)]2

2 𝑁
[
𝛽𝑖
1(𝛼1 + 𝛿)− 𝜆

]}
.

(47)

Then starting from formula (44) and iterating with formula (46), we have

𝐸𝑄
𝑡 (ℎ𝑡+𝑘) =

𝑘−2∏
𝑖=0

𝑙𝑖ℎ𝑡+1. (48)
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And the VIX formula implied by EGARCH(1,1) is

𝑉𝑡 =
1

𝑛
ℎ𝑡+1(1 +

𝑛∑
𝑗=2

𝑗−2∏
𝑖=0

𝑙𝑖) (49)

Proof of Proposition 3. Under the LRNVR 𝑄, the expectation of the conditional vari-

ance k periods ahead can be expressed as

𝐸𝑄
𝑡 (ℎ𝑡+𝑘) = 𝐸𝑄

𝑡

[
𝛼0 + 𝛼1(𝜉𝑡+𝑘−1 − 𝜆

√
ℎ𝑡+𝑘−1)

2 + 𝛽1ℎ𝑡+𝑘−1

+ 𝜃(𝜉𝑡+𝑘−1 − 𝜆
√
ℎ𝑡+𝑘−1)

21(𝜉𝑡+𝑘−1 − 𝜆
√

ℎ𝑡+𝑘−1 < 0)
]

= 𝐸𝑄
𝑡

{
𝛼0 + 𝐸𝑄

𝑡+𝑘−2

[
𝛼1ℎ𝑡+𝑘−1(

𝜉𝑡+𝑘−1√
ℎ𝑡+𝑘−1

− 𝜆)2 + 𝛽1ℎ𝑡+𝑘−1

+ 𝜃ℎ𝑡+𝑘−1

∫ 𝜆

−∞
(𝑢𝑡+𝑘−1 − 𝜆)2

1√
2𝜋

𝑒−
𝑢2𝑡+𝑘−1

2 𝑑𝑢𝑡+𝑘−1

]}
= 𝛼0 +

{
𝛼1(1 + 𝜆2) + 𝛽1 + 𝜃

[ 𝜆√
2𝜋

𝑒−
𝜆2

2 + (1 + 𝜆2)𝑁(𝜆)
]}

𝐸𝑄
𝑡 (ℎ𝑡+𝑘−1),

(50)

Then following the same procedure as that of GARCH(1,1), we can get the VIX formula

for TGARCH(1,1).

Proof of Proposition 4. Under the LRNVR 𝑄, the expectation of the conditional vari-

ance k periods ahead can be expressed as

𝐸𝑄
𝑡 (ℎ𝑡+𝑘) = 𝐸𝑄

𝑡

{
𝛼0 + 𝐸𝑄

𝑡+𝑘−2

[
𝛼1(𝜉𝑡−1 − 𝜆

√
ℎ𝑡−1 − 𝜃

√
ℎ𝑡−1)

2 + 𝛽1ℎ𝑡−1

]}
= 𝛼0 +

{
𝛼1[1 + (𝜆+ 𝜃)2] + 𝛽1

}
𝐸𝑄

𝑡 (ℎ𝑡+𝑘−1).

(51)

Then following the same procedure as that of GARCH(1,1), we can also get the VIX formula

for AGARCH(1,1).

Proof of Proposition 5. Under the LRNVR 𝑄, the expectations of the transitory and

permanent components of the conditional variance k periods ahead can be calculated,

respectively. For 𝑘 > 1,

𝐸𝑄
𝑡 (ℎ𝑡+𝑘) = 𝐸𝑄

𝑡

{
𝛼0 + 𝐸𝑄

𝑡+𝑘−2

[
𝜌𝑞𝑡+𝑘−1 + 𝜙[(𝜉𝑡+𝑘−1 − 𝜆

√
ℎ𝑡+𝑘−1)

2 − ℎ𝑡+𝑘−1]

+ 𝛼1[(𝜉𝑡+𝑘−1 − 𝜆
√
ℎ𝑡+𝑘−1)

2 − 𝑞𝑡+𝑘−1] + 𝛽1(ℎ𝑡+𝑘−1 − 𝑞𝑡+𝑘−1)
]}

= 𝛼0 + [𝛼+ 𝛽 + (𝜙+ 𝛼)𝜆2]𝐸𝑄
𝑡 (ℎ𝑡+𝑘−1) + (𝜌− 𝛼− 𝛽)𝐸𝑄

𝑡 (𝑞𝑡+𝑘−1),

(52)
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and

𝐸𝑄
𝑡 (𝑞𝑡+𝑘) = 𝐸𝑄

𝑡

{
𝛼0 + 𝐸𝑄

𝑡+𝑘−2

[
𝜌𝑞𝑡+𝑘−1 + 𝜙[(𝜉𝑡+𝑘−1 − 𝜆

√
ℎ𝑡+𝑘−1)

2 − ℎ𝑡+𝑘−1]
]}

= 𝛼0 + 𝜙𝜆2𝐸𝑄
𝑡 (ℎ𝑡+𝑘−1) + 𝜌𝐸𝑄

𝑡 (𝑞𝑡+𝑘−1).

(53)

They can be expressed in vector form as

𝐸𝑄
𝑡

(
ℎ𝑡+𝑘

𝑞𝑡+𝑘

)
= 𝛼0

(
1
1

)
+

(
𝛼+ 𝛽 + (𝜙+ 𝛼)𝜆2 𝜌− 𝛼− 𝛽

𝜙𝜆2 𝜌

)
𝐸𝑄

𝑡

(
ℎ𝑡+𝑘−1

𝑞𝑡+𝑘−1

)
. (54)

Continuing this iterating process, It is straightforward that the expectation of the transitory

component of the conditional variance k periods ahead, 𝐸𝑄
𝑡 (ℎ𝑡+𝑘), can be computed as a

linear function of the transitory and permanent components of the conditional variance

of next period, ℎ𝑡+1 and 𝑞𝑡+1. Then the implied VIX under CGARCH(1,1), which is the

average of the expectation of the conditional variance over the next 30 calendar days, can

also be expressed as a linear function of ℎ𝑡+1 and 𝑞𝑡+1.
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Table 1: Evaluation of the difference between GARCH implied VIX and CBOE
VIX over the whole period
This table shows the statistics of the difference between the GARCH implied VIX and
CBOE VIX for the five versions of GARCH model investigated over the time period from
Jan 2, 1990 to Aug 10, 2009. The error is calculated as CBOE VIX minus GARCH implied
VIX. The mean error(ME) calculates the daily average error between the GARCH implied
VIX and CBOE VIX. The standard error(Std.Err.) calculates the standard deviation of the
error. The mean absolute error(MAE) calculates the daily average absolute error between
the GARCH implied VIX and CBOE VIX. The mean squared error(MSE) calculates the
daily average squared error between the GARCH implied VIX and CBOE VIX. The root
mean squared error(RMSE) calculates the square root of the mean squared error. The
P-value is for the null hypothesis that the means of GARCH implied VIX and CBOE
VIX are equal. Violation of one-sigma band represent the probability that the GARCH
implied VIX lies out of the one-standard-deviation band of the CBOE VIX. The correlation
coefficient(Corr. Coef.) calculates the linear correlation between GARCH implied VIX and
CBOE VIX

Model GARCH EGARCH TGARCH AGARCH CGARCH
ME 3.63 3.62 3.78 3.47 3.66
Std.Err. 3.31 3.12 3.24 3.22 3.06
MAE 4.02 3.76 4.08 3.79 3.91
MSE 24.13 22.81 24.78 22.39 22.79
RMSE 4.91 4.78 4.98 4.73 4.77
P-value 0.00 0.00 0.00 0.00 0.00
Violation of one-sigma band 7.86% 8.08% 8.27% 7.44% 6.69%
Corr. Coef. 0.92 0.94 0.93 0.93 0.93
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Figure 1: The Comparison between GARCH Implied VIX and the CBOE VIX
from Jan 2, 1990 to Aug 8, 2009
The estimated GARCH(1,1) model is:
ℎ𝑡 = 7.245× 10−7 + 0.06323𝜖2𝑡−𝑖 + 0.9312ℎ𝑡−𝑖,
and estimated 𝜆 = 0.05235. The conditional variance of the first period are both set at the
variance of the rate of return of S&P 500 over the whole sample period, which is 18.63%
on annual basis.
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Figure 2: The Comparison between EGARCH Implied VIX and the CBOE VIX
from Jan 2, 1990 to Aug 8, 2009
The estimated EGARCH(1,1) model is:
lnℎ𝑡 = −0.1329 + 0.9854 lnℎ𝑡−1 + 𝑔(𝑧𝑡−1),
𝑔(𝑧𝑡−1) = −0.09207𝑧𝑡−1 + 0.1105(∣𝑧𝑡−1∣ −

√
2/𝜋),

and estimated 𝜆 = 0.01675. The conditional variance of the first period is set at the
variance of the rate of return of S&P 500 over the whole sample period, which is 18.63%
on annual basis.
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Figure 3: The Comparison between TGARCH Implied VIX and the CBOE VIX
from Jan 2, 1990 to Aug 8, 2009
The estimated TGARCH(1,1) model is:
ℎ𝑡 = 1.050× 10−6 + 0.001240𝜖2𝑡−1 + 0.1089𝜖2𝑡−11(𝜖𝑡−1 < 0) + 0.9333ℎ𝑡−1,
and estimated 𝜆 = 0.02311. The conditional variance of the first period is set at the
variance of the rate of return of S&P 500 over the whole sample period, which is 18.63%
on annual basis.
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Figure 4: The Comparison between AGARCH Implied VIX and the CBOE VIX
from Jan 2, 1990 to Aug 8, 2009
The estimated AGARCH(1,1) model is:
ℎ𝑡 = 1.128× 10−6 + 0.05523(𝜖𝑡−1 − 1.014

√
ℎ𝑡−1)

2 + 0.8802ℎ𝑡−1,
and estimated 𝜆 = 0.01498.The conditional variance of the first period is set at the variance
of the rate of return of S&P 500 over the whole sample period, which is 18.63% on annual
basis.
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Figure 5: The Comparison between CGARCH Implied VIX and the CBOE VIX
from Jan 2, 1990 to Aug 8, 2009
The estimated CGARCH(1,1) model is:
ℎ𝑡 − 𝑞𝑡 = 0.04814(𝜖2𝑡−1 − 𝑞𝑡−1) + 0.9169(ℎ𝑡−1 − 𝑞𝑡−1),
𝑞𝑡 = 2.010× 10−7 + 0.9984𝑞𝑡−1 + 0.02331(𝜖2𝑡−1 − ℎ𝑡−1),
and estimated 𝜆 = 0.05286. The transitory and permanent components of the conditional
variance of the first period are both set at the variance of the rate of return of S&P 500
over the whole sample period, which is 18.63% on annual basis.


