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Abstract

This paper studies the impact of Al technology on the mutual fund industry. I
develop a new measure of Al adoption based on hiring practices and find that this
measure can predict fund performance. The funds with high Al ratio outperform non-
AT funds, after I controlling for standard factors and fund characteristics. Further
empirical evidence shows that funds with a high Al ratio tilt their portfolios toward high
information intensity stocks, indicating that mutual funds benefit from Al technology
adoption by improving their information capacity. Consistent with this channel, I find
that the outperformance of these mutual funds mainly comes from better stock picking

skills. Finally, Al technology adoption has a negligible effect on fund manager turnover.
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1 Introduction

Information is the cornerstone of success in the mutual fund industry, as the fundamental
task of a fund manager is to process information about future asset values and use that
information to invest in high-value assets. However, fund managers are often overwhelmed
by vast amounts of data—from economic indicators and corporate earnings to geopolitical
events and market sentiment—yet they have limited time and cognitive capacity to analyze it
all effectively (Kacperczyk et al., 2016). This is where artificial intelligence (Al), one of the
most significant technological breakthroughs of the past decade, plays a transformative role.
Leading asset management firms have heavily invested in Al recently, as evidenced by the
rapid increase in human capital investment since 2016 (Figure 2). Al assists fund managers
in managing information overload by rapidly processing, analyzing, and extracting insights
from enormous datasets. Machine learning algorithms can identify patterns and correlations
that might escape human detection, while natural language processing can sift through news
articles, social media, and corporate reports to gauge market sentiment and flag potential

risks or opportunities.

While past literature has explored the impact of Al adoption on firm growth and innova-
tion (Babina et al., 2024), corporate investment (Sheng-Syan Chen and Peng, 2024), banks
(Leonardo Gambacorta and Schiaffi, 2024), hedge funds (Sheng et al., 2024), and venture
capitalists (Bonelli, 2023), little is known about its influence on the mutual fund industry.
The only indirect evidence comes from Bonelli and Foucault (2023), who find that the re-
lease of satellite imagery data can affect the stock-picking skills of mutual fund managers.
One potential challenge is the lack of a clear AI measure, as mutual fund companies are not

required to disclose this type of information.

This paper provides one of the first pieces of evidence on how Al technology shapes
the mutual fund industry. I provide empirical evidence that funds adopting Al technology
outperform through portfolio sorting and Fama-MacBeth regressions. Then, 1 explore the

underlying channel, finding that mutual funds with AI technology can gain a competitive



advantage by improving their information capacity. Finally, I also study the impact of Al on

mutual fund manager turnover.

To study the adoption of AI technology by mutual funds, I construct a new measure
based on hiring practices.! The highly specialized nature of Al and its applications demand
specialized talent, leading to a scarcity of human capital in this field.? This makes the
approach particularly appropriate for assessing Al adoption. I collect job posting data for
asset management companies from Burning Glass, which encompasses the near-universe of
US online job vacancy postings and their detailed skill requirements. Following Babina et al.
(2024) and Abis and Veldkamp (2024), I measure the Al-relatedness of each skill in the job
postings data by examining its co-occurrence with the four core Al skills. I then calculate the
Al-relatedness of each job posting by averaging the Al-relatedness of all the skills required
for that position and aggregate this measure to the firm level. Finally, I calculate the Al

ratio for each firm-quarter by dividing the AI labor stock by the total labor stock.

Even with the method described above, identifying Al adoption for mutual funds remains
challenging due to two potential issues. First, asset management companies typically conduct
hiring at the company level, which may include other sectors. For example, Goldman Sachs
might hire new employees for its investment banking division. Second, there is a risk of
mislabeling, where jobs might be erroneously categorized as Al-related. For instance, asset
management firms often hire web developers for website design, and these postings could
be mistakenly classified as Al-related due to the programming skills required. To address
these challenges, I instructed GPT-4 to act as a judge to determine whether a job posting
pertains to the asset management sector and whether it is Al-related. The output from

GPT-4 demonstrates that it can efficiently resolve both issues.

I begin my analysis by describing key patterns in Al recruitment for mutual funds. During

!The measure is at the firm level rather than the fund level. For more details, see Section 2.4.

2See Wall Street Banks Are Poaching Rival AI Talent Link: https://www.bloomberg.com /news/articles/2023-
11-28 /goldman-raided-by-recruiters-in-wall-street-fight-for-ai-talent.
The war for Al talent is heating up Link: https://www.economist.com/business/2024,/06/08/the-war-for-ai-
talent-is-heating-up



the sample period, the fraction of AI jobs has increased over time, particularly after 2016.
Over the entire sample period, the average Al ratio is 1.369%, indicating that for every 1,000
employees in asset management companies, there are, on average, 14 Al employees. The Al
ratio is slightly positively correlated with the flow but not correlated with the expense ratio,

fund age, turnover ratio, or active share.

Next, I address the question of whether Al adoption can affect fund performance. I con-
duct two standard analyses in the literature: portfolio sorting and Fama-MacBeth regression.
The portfolio sorting results show that mutual funds with a higher AI ratio generate higher
returns over the next six months. In my baseline results, I demonstrate that a long-short
portfolio, which goes long in the top 20% of funds with the highest AT ratio and short in the
bottom 20% of funds with the lowest Al ratio, delivers an annual excess return of 1.56%,
statistically significant at the 1% level. Moreover, the results are robust when performance
is measured using CAPM alphas or Carhart alphas. These findings are further confirmed
in a multivariate analysis that controls for fund characteristics. Using Fama-MacBeth re-
gressions, I show that a 1-standard-deviation increase in the Al ratio is associated with an
annualized return that is 61.4 basis points higher. Overall, these results support the conclu-
sion that adopting Al technology provides mutual funds with a competitive advantage over

other funds.

Then, I examine return predictability across different sample periods. There are two
competing hypotheses. On one hand, since Al became more powerful after 2016, we might
expect return predictability to be stronger in the second half of the sample period. On the
other hand, AI technology might exhibit a “first mover advantage,” where early adopters
earn more profit initially, and once all funds adopt Al, none may generate excess returns
anymore. In this case, we would expect return predictability to be stronger in the first half.
I equally divide the entire sample period into two parts. I repeat the portfolio sorting and
Fama-MacBeth regressions for these two subsamples. The results indicate that the predictive

power comes from the second half of the sample, supporting the first hypothesis. This suggests



that we have not yet reached an equilibrium where Al technology has stopped evolving and

mutual funds no longer benefit from using Al due to overcrowding in Al-based investments.

Having established that the Al ratio can predict the future performance of mutual funds,
a natural follow-up question concerns the underlying mechanism. Anecdotal evidence and
past literature (Bonelli and Foucault, 2023) suggest that Al technology can enhance mutual
funds’ information capacity. I provide empirical evidence supporting this specific channel
while not excluding other potential channels (such as algorithmic trading) in my analysis.
Cao et al. (2021) show that AI surpasses human analysts when the information is transpar-
ent but voluminous, whereas humans excel when critical information requires institutional
knowledge or subjective judgment. Therefore, my hypothesis is that if mutual funds improve
their information capacity after adopting Al technology, they tend to hold high information
intensity stocks, in which they have a comparative advantage. I use three variables from
Cao et al. (2021) to measure the information intensity of a stock: the number of information
events, market capitalization, and age of the stock. Consistent with my hypothesis, I find
that mutual funds with a higher Al ratio tend to tilt their portfolios toward larger stocks, old-
er stocks, and stocks with more information events. Furthermore, I find that trades in stocks
with high information intensity made by mutual funds with a high Al ratio can predict stock
returns in the next quarter, whereas trades in stocks with low information intensity cannot.
This evidence supports the conclusion that the outperformance is indeed attributable to high

information intensity stocks.

I further provide causal evidence for the above channel using difference-in-difference re-
gressions. I treat the publication of the Transformer model as an Al technology shock and
compare mutual funds’ holdings before and after this event. I find that mutual funds with
a higher Al ratio tilt their portfolios toward stocks with high information intensity following

the AT technology shock, which is consistent with the hypothesis.

To better understand the source of outperformance for these mutual funds with a high

Al ratio, I decompose the fund performance into stock picking and market timing, following



Kacperczyk et al. (2014)’s method. The results show that the outperformance mainly comes
from improved stock picking skills, which is consistent with the idea that mutual funds with

a high Al ratio are better at analyzing stocks with high information intensity.

Finally, T test the impact of Al technology on mutual fund managers. On one hand,
if mutual funds increasingly rely on Al technology, they may reduce their dependence on
individual fund managers. On the other hand, Al technology may not easily threaten mutual
fund managers, as this is a high-tech occupation requiring numerous soft skills. Therefore,
whether the Al ratio can predict higher fund manager turnover remains an open question.
Following Kostovetsky and Warner (2015), I construct two manager turnover variables as
the dependent variables. Both OLS and probit regressions show that the AI ratio cannot
predict manager turnover, indicating that AI technology has not yet threatened the positions

of mutual fund managers.

My paper contributes to the growing literature on the effects of Al on investment. Re-
cent work make progress in examining the impact of Al technologies on investment across
various specific settings, such as stock investment (Cao et al., 2021), corporate investment
(Sheng-Syan Chen and Peng, 2024), bank lending (Leonardo Gambacorta and Schiaffi, 2024),
and VC investment (Bonelli, 2023). To the best of my knowledge, this paper is the first to
develop a measure of Al adoption by mutual funds—a previously unexplored class of financial
intermediariesand discuss its consequences. More broadly, following the pioneering research
by Gu et al. (2020), many researchers use different machine learning tools to develop invest-
ment strategies in the stock market to generate excess returns, such as Avramov et al. (2023),
Chen et al. (2024), and Li et al. (2022). Recently, some researchers also develop investment
strategies leveraging the recent breakthroughs in large language models (Chen et al., 2022;
Gabaix et al., 2023; Kim et al., 2024; Lu et al., 2023; Lopez-Lira and Tang, 2023). This paper
examines the same topic from a new perspective: whether mutual funds use and benefit from

these Al-driven investment strategies.

My paper also highlights that mutual funds can improve their information capacity by



adopting Al technology. The work of Bonelli and Foucault (2023) is closely related to my re-
search, as it explores how the combination of big data and Al skills enables asset managers to
gain more precise insights into stock returns and make better investment decisions. Similarly,
using mutual fund holding information, Du et al. (2023) find that humans reallocate their
information production capacity towards portfolio firms where they have a comparative ad-
vantage over machines. However, both papers focus on mutual funds utilizing specific types
of Al tools—satellite imagery for Bonelli and Foucault (2023) and automated downloading
of SEC filings for Du et al. (2023). In contrast, my paper examines mutual fund AI usage
from a broader perspective and provides empirical evidence that it improves the information

capacity of mutual funds.

My paper more broadly contributes to the long-standing literature on fund return pre-
dictability. Numerous fund characteristics have been used to predict fund returns, such as
fund size, fund family size, and turnover. Recent literature has employed machine learning
methods to predict fund returns (Li and Rossi, 2020; Kaniel et al., 2023; DeMiguel et al.,
2023). I contribute to this body of work by focusing on a new fund characteristic-Al labor
recruitment—which can also predict future fund returns. One article similar to mine is that
by Abis (2020), which studies how quantitative investment strategies influence mutual fund

performance.

Finally, my paper is related to the growing literature on the competition and threat
posed to humans by Al technology. Acemoglu et al. (2022) study the effect of exposure to
AT technologies on labor demand. Abis and Veldkamp (2024) examine the shift in labor
shares within the financial industry driven by new data management and Al jobs. My paper
contributes to the existing literature by testing whether Al technology threatens the positions

of mutual fund managers.

The paper proceeds as follows. Section 2 describes an Al measure for mutual funds.
Section 3 tests whether this AI measure can predict mutual fund performance. Section 4

further investigates the underlying mechanism for return predictability. Section 5 examines



whether adopting Al technology increases fund manager turnover. Section 6 concludes. The
Appendix provides details about the variable definitions and the process of constructing the

AT measure.

2 Construct AI Measure

Al is a broad and evolving concept. According to the National Institute of Standards and
Technology, an Al system is defined as “an engineered or machine-based system that can, for
a given set of objectives, generate outputs such as predictions, recommendations, or decisions
influencing real or virtual environments.”? In this section, I provide an overview of how Al
technology is used in the mutual fund industry. Then, I briefly discuss how previous literature
constructs the Al measure. Finally, I introduce the procedure for developing the AI measure
in this paper. In addition, I also give an introduction to Burning Glass data, which is key to

constructing the Al measure.

2.1 Institutional Background: AI and Mutual Funds

AT has been one of the most significant technological advancements in the past decade. It
has been integrated across various industries, including healthcare, retail, transportation,
and entertainment. The finance industry is an early adopter of Al and big data technology.
Acemoglu et al. (2022) document that the finance sector ranks third in the number of Al job
postings, following the information and business services sectors. Within the finance industry,
researchers study the impact of Al on stock market (Dou et al., 2024), entrepreneurship
(Gofman and Jin, 2024), and sell-side analysts (Grennan and Michaely, 2020). However,

there is limited literature focusing on the impact of AI on mutual funds so far.

In practice, mutual funds usually take advantage of Al technology in several ways. First,

mutual funds can use Al tools to gather and analyze information to enhance investment

3See https://nvlpubs.nist.gov/nistpubs/ai/NIST.AL.100-1.pdf.



decision-making. For example, mutual funds can analyze satellite images to find trading
signals and generate excess returns. Bonelli and Foucault (2023) find that mutual funds’
stock-picking ability in a given stock drops after it becomes “covered” when the satellite
image data becomes available. Large language models, recent breakthroughs in generative
Al can also be used to analyze information and make investment decisions. Lu et al. (2023)
use ChatGPT to form portfolios based on two types of textual data: Wall Street Journal
articles and policy announcements by the Chinese government. They find that the portfolio
generated by ChatGPT can significantly outperform the benchmark. Bertomeu et al. (2023)
find that after ChatGPT was banned in Italy, the information processing capacity of analysts

and investors decreased significantly.*

The second application of Al technology in the fund industry is algorithmic trading, often
referred to as high-frequency trading (HFT). Leveraging Al’s ability to execute trades within
milliseconds and handle large volumes simultaneously, algorithmic trading is widely employed
to identify small price discrepancies in the market for arbitrage opportunities. In some cases,
the processes of information gathering and trading are integrated. Asset managers develop
sophisticated mathematical models that analyze market data—such as price, volume, and
volatility—to identify trading opportunities. When such opportunities arise, pre-programmed

computer algorithms execute trades at high speeds.

Finally, Al is also transforming customer service in asset management. Al-powered chat-
bots deliver continuous support, adeptly handling queries and issues around the clock. This
capability allows for the efficient management of routine inquiries, thereby reducing opera-
tional costs. Another application is robo-advisory, which uses algorithms and machine learn-
ing to provide automated, low-cost investment advice and portfolio management services to

clients. DAcunto et al. (2019) find that investors adopting robo-advising exhibit declines in

4The asset management company adopts this kind of textual analysis method to generate trad-
ing signals even before ChatGPT was developed. For example, in 2019, BlackRock used tech-
nology to analyze over 5,000 earnings call transcripts and more than 6,000 broker reports ev-
ery day, transforming unstructured text into proprietary measures of trending analyst sentiment.
See https://www.blackrock.com/corporate/literature/whitepaper/viewpoint-artificial-intelligence-machine-
learning-asset-management-october-2019.pdf.



behavioral biases and experience diversification benefits.

2.2 Al Measures in Literature

Measuring Al usage is difficult since companies are not required to disclose this type of infor-
mation. There are several different ways to measure Al technology adoption in the previous
literature. The first one is based on firms’ earnings conference calls. Sheng-Syan Chen and
Peng (2024) use textual analysis to capture references to Al applications within manage-
ment presentations and their responses during Q&A sessions. Similarly, Abis (2020) conduct
textual analysis on “Principal Investment Strategies” section of mutual fund prospectuses
to categorize funds as quants or discretionaries. However, this type of method cannot be
applied to identify Al funds. Chen and Ren (2022) try to identify mutual funds adopting
AT technology by analyzing the prospectus (filed as Form 497K or 485BPOS). But they only
find 15 Al-powered mutual funds.® Researchers also measure Al adoption using survey data.
Leonardo Gambacorta and Schiaffi (2024) identify “Al banks” using information obtained
from the 2022 RBLS survey. However, such survey data is not available for the mutual
fund industry. Another measure is automated information acquisition. Du et al. (2023) use
the EDGAR Log File data to infer algorithm usage. If a large volume of EDGAR filings
is downloaded beyond human comprehension within a short period of time, it is classified
as automation of information acquisition. Then, they identify IP addresses that belong to
investment companies. Although machine-based SEC filing downloads are related to Al tech-
nology, it is just a simple application and cannot serve as a comprehensive Al measure in
my analysis. A recent measure proposed by Sheng et al. (2024) calculates portfolio changes
in response to Al-predicted signals from earnings conference call transcripts. This measure

also focuses on a specific type of Al usage, whereas I aim to capture the overall use of Al.

The most commonly used measure in recent literature is the intensity of Al-skilled hiring

°T also try to identify funds with AI in this way and end up with 19 Al-powered mutual funds by the end
of 2022, after excluding funds investing in Al companies. Most of them are active ETFs. The tickers of these
mutual funds are: AIVL, AIVI, AQGX, AIEQ, AIIQ, BIKR, QRFT, AMOM, WIZ, HDIV, SNUG, NVQ,
DUDE, BOB, LETB, OAIE, AIDB, LQAI, AIYY.
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(Acemoglu et al., 2022; Babina et al., 2024; Abis and Veldkamp, 2024; Cao et al., 2022).
Given that Al is highly technical and its applications require specialized talent, this approach
is particularly suitable. The basic idea is to leverage job postings data to calculate an Al
score for each skill and aggregate to the job level and then company level. To construct a
recruitment-based Al measure, the key input is Burning Glass job posting data, which will

be introduced in the next subsection.

2.3 Burning Glass Data

Job posting data is sourced from Lightcast (formerly Burning Glass Technologies, referred
to as Burning Glass hereafter), a premier labor market analytics firm in the United States.
Burning Glass aggregates data from a comprehensive range of online sources, including ap-
proximately 40,000 company websites and job boards, with no more than 5% of vacancies
from any one source. The firm employs a deduplication algorithm to refine the data, trans-
forming it into a format suitable for analysis. Burning Glass data capture the near-universe of
jobs posted online and cover 60%-80% of all U.S. job vacancies. The finance and technology
industries have particularly good coverage. Besides being useful for job seekers, this data is
also widely used by researchers in the field of labor economics. Acemoglu et al. (2022) show
that the data closely track the evolution of overall vacancies in the US economy as recorded
by the nationally representative Bureau of Labor Statistics (BLS) Job Openings and Labor

Turnover Survey (JOLTS), which verifies the representativeness of the Burning Glass data.

My sample includes data spanning from the beginning of 2010 until December 2022, as
the Burning Glass data starts from 2010. After removing duplicated job postings, I match the
employers listed in the postings with asset management companies. I conduct fuzzy matching
between company names in the Burning Glass database and the names of asset management
companies in the CRSP mutual fund database. For observations that do not exactly match,
I manually assess the top three potential fuzzy matches by examining the company names.

I exclude asset management companies that have fewer than 100 job postings due to the
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potential for significant noise.® The final sample of job postings contains a total of 5,329,188

observations.

2.4 Measuring Al for Mutual Funds

In this subsection, I describe my methodology for measuring AI usage in mutual funds. This
methodology is based on those used in Babina et al. (2024), Abis and Veldkamp (2024) and
Cao et al. (2022), but includes a few improvements. The steps are as follows: first, I calculate
the Al-relatedness of each skill and aggregate it to the job-posting level; second, I adjust the
job-posting level Al score using GPT and then aggregate it to the company level; third,
I adjust the number of Al job postings based on the estimated hiring/separation rate and

calculate the Al labor stock.

The first step is to measure the Al-relatedness of each skill. I basically follow Babina
et al. (2024) in this step. Four skills are defined as unambiguous core Al skills: Artificial
Intelligence (AI), machine learning (ML), natural language processing (NLP) and computer

vision (CV). For each skill s, I calculate their co-occurrence with the core Al skills:

ar _ # of jobs with skill s and (AI, ML, NLP or CV) in required skills or in job title

S

# of jobs with requiring skill s

(1)

This measure reflects the degree of correlation between each skill s and the core AT skills. T
present 20 skills that demonstrate high Al-relatedness and 20 that exhibit low Al-relatedness
in Appendix B, Table 12. For instance, the skill “Unstructured Data” has a value of 0.46,
indicating that 46% of job postings requiring “Unstructured Data” also require one of the
core Al skills or mention one of the core Al skills in the job title. Conversely, “Regulato-
ry Compliance” has a value of only 0.018. These results are consistent with the common

sense that “Unstructured Data” is closely related to Al, while “Regulatory Compliance” is

T match roughly half of the mutual fund universe to the Burning Glass database. Most of them are from
relatively large fund families.
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unrelated.

The next step is to aggregate the Al-relatedness to the job-posting level. In Babina
et al. (2024), this is achieved by calculating the average Al-relatedness across all required
skills for each job posting. While this approach is generally suitable for most companies,
it encounters two potential challenges when applied to asset management companies. First,
asset management companies typically conduct hiring at the company level, and the hiring
might be for other sectors. For example, Goldman Sachs might hire new employees for its
investment banking division rather than its asset management sector. Second, there is a risk
of mislabeling, where jobs might be erroneously categorized as Al-related. For example, asset
management firms often hire web developers for website design, and these postings could be

mistakenly classified as Al-related due to the programming skills required.

To address the two challenges above, I instruct GPT-4 to act as a judge to determine
whether a job posting pertains to the asset management sector and whether it is Al-related.
Figure 1 illustrates the entire process used to identify Al-related jobs. To give a better
interpretation of the procedures, I also show the details for ten examples. Appendix B, Table
13 lists ten job postings from Burning Glass, detailing the company name, required skills,
and job title. The AI score is calculated as the average Al-relatedness of all the required

skills for job posting j, as in Babina et al. (2024):

LN
witl = N > wt (2)
s=1

The first step involves determining whether these job postings are from the asset management
sector. I input the job titles into GPT-4 for evaluation. Appendix B, Figure 5 presents the
prompt I used and GPT-4’s response for the ten job postings listed in Appendix B, Table
13.7 GPT-4 identifies that the first, second, and sixth job postings are not from the asset

management sector, which aligns with our intuition that they are from the banking sector.

"This demonstration case is generated by GPT-4 in POE. For the formal empirical analysis, I use the
OpenAl API with the same prompt. This setup will not lead to variance in GPT-4’s responses because I ask
GPT-4 to forget the previous input each time.
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After this step, the total number of job postings is reduced from 5,329,188 to 1,853,763.
Second, I exclude the job postings with wj” < 0.07. Here, I try to choose a threshold slightly
lower than Babina et al. (2024) (which is 0.1) because the final filtering step by GPT-4 can
reduce Type I error (incorrectly labeling other types of job postings as Al-related).® After
this step, the number of job postings decreases from 1,853,763 to 70,134. The last step
involves GPT-4 assessing whether a job posting is Al-related based on its title. Appendix B,
Figure 6 presents the prompt I used and GPT-4’s response for the seven job postings from the
asset management sector in Appendix B, Figure 5. GPT-4 categorizes a senior data scientist
as “Strongly Al related”, an ESG data specialist as “Weakly Al related”, and a lead site
reliability engineer as “Not Al related”.” These results are consistent with iutuition. From
the 70,134 job postings remaining after the previous step, 24,123 are classified as “Strongly
Al related”, 5,049 as “Al related”, 22,799 as “Weakly Al related”, and 18,163 as “Not Al
related”. Finally, I categorize the labels generated by GPT-4 into a numerical score using

the following mapping:

I; =1 is assigned to “Strongly Al related”

I; = 0.7 is assigned to “Al related”

I; = 0.3 is assigned to “Weakly Al related”

I; = 0 is assigned to “Not Al related”

The correlation between this indicator /; and the raw Al score wj‘-‘” is 67.13%. This correlation
suggests that GPT-4’s judgments are closely aligned with the Al relatedness of the skills

required, meanwhile providing a refined assessment.

Figure 7 illustrates the frequency of all keywords in the titles of job postings categorized

as “Strongly Al related” and “Not Al related” by GPT-4, with larger sizes indicating higher

8In Appendix C, I also explore other thresholds. I construct alternative Al measures with cutoffs equal
to 0.075, 0.08, 0.085, and 0.09. Appendix C, Table 15 and Figure 9 show that the correlations between these
measures are higher than 0.99.

9Tn my sample, the AI job postings can be roughly divided into two categories. Some focus on applying
AT (e.g., Vice President, Systematic Active Equity Team), while others support Al infrastructure (e.g., Data
Scientist - Machine Learning/AI/Python). There are also some in between (e.g., ML Engineer - Investment
(Python/AWS)).
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frequencies. The keyword with the highest frequency in the ”Strongly Al related” category
is “big data,” while “Java developer” has a high frequency in the ”"Not Al related” category.
This indicates that GPT-4 effectively helps filter jobs with similar skill requirements to Al

jobs but are not Al jobs.

After obtaining a measure for Al-related job postings, I aggregate this data to the quar-
terly level to observe trends in Al hiring over time. Figure 2 plots the Al labor recruitment
in the mutual fund industry quarterly. In the upper panel of the figure, Al job postings are
relatively scarce during the early years and show a significant increase later on, with the ex-
ception of 2020 due to the COVID-19 pandemic. Meanwhile, the total number of job postings
in the mutual fund industry exhibits a gradual increase throughout the sample period. The
lower panel of Figure 2 plots the ratio of Al job postings to total job postings. This graph
highlights a marked surge in Al hiring after 2016Q4. Another takeaway from Figure 2 is that
is that despite concerns about Al potentially takes away jobs from people, the mutual fund
industry has not yet reached that stage. In Figure 8 in Appendix B, I also show the Al labor
recruitment for Blackrock and T. Rowe Price Group as two examples. Their patterns align
with the general trend in Figure 2, though the hiring has a larger variation in the company

level.

The final step is to calculate the Al labor stock for each asset management company with
the indicator above. I follow a similar method to Abis and Veldkamp (2024) and Cao et al.
(2022). First, I obtain data from the Bureau of Labor Statistics to estimate the likelihood
that a vacancy is filled and the likelihood that an employed worker leaves their job. I compute

the labor stock for each firm-quarter as follows:

N
lftl = lftl—l(l - sepfu) + hfu Z I, (3)

=1
where [}/ denotes the AI labor stock for firm i in quarter ¢, sep;*’ is the separation rate,

h{! represents the vacancy fill rate for the financial services sector'” and I, ; is the indicator

0Data is sourced from the Finance and Insurance (NAICS 52) industry according to the BLS classification.
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for job posting j at firm 4, calculated in the last step. For example, if Firm A has 50 Al
employees in 2016Q4 and posts 20 Al job postings in 2017Q1 with an estimated average
separation rate of 0.08 and a hiring rate of 0.6 for that quarter, then Firm A’s AT labor stock
in 2017Q1 would be calculated as follows: 50 x (1 — 0.08) + 20 x 0.6 = 58. Subsequently, I
calculate the total labor stock lgtoml in the same way, using the total number of job postings
in the asset management sector for each company. I measure Al usage within each firm by

calculating the Al ratio, defined as the ratio of Al labor stock to the total labor.!

AT
Al ratio;; = —= (4)

Total
li t

It is worth noting that since the hiring is conducted at the firm level, the AT measure is also at
the firm level rather than the fund level. The assumption here is that if an asset management
company employs a higher proportion of Al labor, the mutual funds it manages tend to utilize
more Al on average. In reality, asset management companies often form centralized Al or
data science teams. These teams are responsible for developing and maintaining Al models,

data analytics, and other technological tools that can be used across the entire organization.

3 Al Adoption and Mutual Fund Performance

In the last section, I documented the rapid adoption of Al technology in the mutual fund
industry over the past decade. However, since stock investment is a challenging task, it
remains an open question whether mutual funds can benefit from the Al technology. In
this section, I test whether the Al ratio can predict mutual fund performance. First, I
introduce the data used in the empirical analysis and present descriptive statistics. Then, I
conduct portfolio sorting and Fama-MacBeth regressions using the Al ratio constructed in

the previous section.

"UHere, it is important to measure Al hiring as a ratio. Some people may argue that, keeping other
conditions unchanged, it is not surprising that increasing the recruitment of a specific type of labor can
improve a fund’s performance. When I measure Al hiring as a ratio, the question becomes whether hiring
more Al employees is a relatively better allocation of human capital, which is an open question.
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3.1 Data and Summary Statistics

I use data from a variety of publicly available databases. The first one is the job posting
data from Burning Glass, as I discuss in Section 2.3. The second one is the CRSP Survivor-
ship Bias-Free Mutual Fund Database, which contains monthly net returns, total net assets
(TNA), and other characteristics (expense ratio, portfolio turnover, fund type, etc.). Net
return is the simple return received by the investors after fund expenses. Using the CRSP
share class group number (crsp_cl grp), I aggregate the fund return across share classes,
value-weighted by TNA. My analysis focuses on actively managed domestic equity mutual

12T exclude target-date funds by removing funds whose names contain the strings

funds.
target and specific years (e.g., 2005, 2010, 2015, etc.). I also exclude funds with total as-
sets below $10 million. The third database is the Thomson Reuters Mutual Fund Holdings
database (TFN/CDA S12), from which I get quarterly mutual fund holdings information. I
use MFLINKS to merge the CRSP Mutual Fund Database and the S12 holdings database.
The stock-level information is obtained from the CRSP database, except for the number
of information events, which comes from the Capital IQQ Key Development database. Mar-
ket return, risk free rate and Fama-French Charhart four-factor are obtained from Professor
Kenneth French’s website. The last one is the Morningstar database, from which I get infor-

mation related to mutual fund managers. The Morningstar database and the CRSP Mutual

Fund Database are merged using CUSIP.

Appendix A shows a comprehensive definitions of all the variables in this paper. Fund
age is based on the oldest share class. Activeshare is calculated with the method of Doshi
et al. (2015).'3 Following the mutual fund literature (e.g. Lou, 2012), the flow rate for fund

i in quarter ¢ is defined as the net flow into the fund divided by lagged TNA, adjusted by

12A fund is a domestic active equity fund if its CRSP fund style code starts with “ED” and its
index_fund_flag does not equal “B”, “D”, or “E”.

13The code can be found at Professor Mikhail Simutin’s website. See http://www-
2.rotman.utoronto.ca/simutin/research.asp.
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M&A:

TNALt — TNAi,t,1 * (1 + REiTLt) - MGNi’t (5)
TNA;,

flow; =

Finally, I exclude the funds with TNA less than 10 million dollar. I also exclude the data
from 2010, as it serves as the formation period for the Al ratio, given that labor stock is
calculated cumulatively. All continuous variables are winsorized at the 1% and 99% levels to

minimize the impact of outliers.

Panel A of Table 1 presents the summary statistics for my sample. The average Al ratio
is 1.369%, indicating that for every 1,000 employees in asset management companies, there
are, on average, 14 Al employees. The results for other variables are consistent with those
reported in earlier studies, except for TNA and family size, which are relatively larger due
to the matching method. Panel B of Table 1 displays the correlation matrix among the main
variables. The Al ratio has a low correlation with other variables, while it exhibits a slightly
positive correlation with TNA and a slightly negative correlation with the expense ratio.
This suggests that funds adopting Al technology are relatively larger and charge lower fees.
However, this correlation only serves as weak evidence since I do not add any restrictions or

control variables.

After presenting the summary statistics, I document some basic facts about Al funds. I
examine the relationship between the Al measure and fund characteristics using the following

regressions:

Characteristics;; = a + B Al _ratio; ;1 + n¢ + €4 (6)

where Characteristics;; represents the fund characteristic of interest for fund 7 in quarter
t. I choose five characteristics: flow rate, expense ratio, fund age, turnover ratio, and active
share. The independent variable is the Al ratio, lagged by one quarter. I include time-fixed

effects to control for the temporal trend of the Al ratio. Standard errors are clustered at the
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fund family and quarter level. Table 16 in Appendix D reports the regression results. Funds
with a higher Al ratio tend to have a higher flow rate. Although funds do not disclose Al
usage in their prospectus, the integration of Al technologies into investment strategies can
be a significant selling point during the marketing process, which can attract inflows. The

coefficients for the other four dependent variables are not significant.

Furthermore, I present the distribution of Al ratios across all mutual funds at different
points in time to observe how it evolves. The results are shown in Figure 3. The distribution
shifts to the right over time, indicating that an increasing number of asset management

companies are adopting Al technology.'

3.2 Portfolio Sorting

I begin investigating the relationship between the Al ratio and future fund performance using
a portfolio sorting method. At the beginning of every semi-year, I sort all mutual funds based
on their AT ratio and form quintile portfolios. The high (low) quintile portfolio consists of
mutual funds with the highest (lowest) Al ratio values. I conduct portfolio sorting semi-
yearly rather than quarterly because it takes time for Al labor to become effective. I then
construct a long-short portfolio that goes long on the high quintile portfolio and short on
the low quintile portfolio, holding it for one month. Finally, following previous studies, |

compute risk-adjusted performance using the CAPM and the Carhart 4-factor model:

Alpha{ /'™ = Ret;; — B;4—1 x RMRF, (7)
Alpha{** = Ret;, — B},_y x RMRF, — 3}, | x SM B, — 8}, x HML, — 3},_, x MOM,
(8)

14The mutual funds on the right side of the graphs are managed by AQR Capital Management. AQR
(Applied Quantitative Research) is a renowned quantitative investment firm, well-known for its use of quan-

titative methods to guide its investment strategies. Additionally, AQR is a leading adopter of Al technology
in the investment industry.
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where Ret;; is the excess return of fund ¢ in period ¢ over the risk-free rate. RM RF; is the
market excess return, and SM B;, HM L,, and M OM, are the returns of the factor portfolios
related to size, book-to-market, and momentum, respectively. All 8s are calculated using
a rolling window regression from ¢ — 36 to ¢t — 1. In other words, alpha is defined as the
difference between a fund’s raw return in period ¢ and the fund’s 4-factor expected return in

period .

The first column of Table 2 reports the value-weighted time-series average monthly mutual
fund return (in percentage) for funds within each quintile. The next two columns report the
value-weighted time-series average CAPM monthly alphas and Carhart 4-factor monthly
alphas, respectively. The total number of observations is equal to 144, as the sample period
spans from 2011 to 2022, containing 144 months. At the bottom of Table 2, I also report the
performance differences in return (alpha) between the portfolios of high-AI (bottom quintile)
and low-Al (top quintile) funds. Alphas are negative in most quintiles, which is consistent
with the well-documented fact that the mutual fund industry cannot beat the market (Fama
and French, 2010). I find that funds hiring more AI employees significantly perform better
in the future. Specifically, the difference between the bottom and top quintiles is positive:
the monthly performance difference is 0.130% for raw returns, 0.164% for CAPM alphas, and
0.076% for Carhart 4-factor alphas. These translate to annualized return differences of 156
basis points (i.e., 0.130 x 12) for raw returns, 197 basis points for CAPM alphas, and 91 basis
points for Carhart 4-factor alphas. All three performance measures generate differences that
are statistically significant. All the results above indicate that mutual funds can benefit from

adopting Al technology by outperforming other funds.

After documenting the alphas of the Al ratio quintile portfolios, I also study the differences
in factor loadings of these portfolios. The factor loadings are calculated using the daily returns
for each fund each quarter. Then, I calculate the average factor loading for each portfolio
each quarter. Panel A in Table 6 reports the average factor loading for each group. The

factor loadings are similar across Al quintiles, except in the case of the size factor, which is
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smaller for portfolios with a higher Al ratio.

3.3 DMultivariate Analysis

Next, I perform a multivariate analysis, which allows me to control for a set of fund-specific
characteristics that may subsume the AI measure’s power to predict fund returns. These
characteristics include the size of the fund, the size of the family the fund belongs to, past
performance, the age of the fund, the expense ratio, and the flows it received. I take the
natural logarithm of the fund size, the fund family size, and the fund age. Among these
control variables, the most important one is the fund family size because a large fund family
is more likely to have a centralized Al or data science team. Furthermore, family size is also
positively related to performance, as documented in Péstor et al. (2015). It is also important
to include time fixed effects in the control variables, as the Al ratio is increasing over time

by construction. A detailed definition of these variables is reported in Appendix A.

I implement the following Fama-MacBeth regressions:
Alphaft”hm =+ Al ratioj—o +yControls;;—1 +ne + 0; + €4 9)

where the dependent variable is fund i’s quarterly Carhart alpha. The Al ratio is lagged
for one more period since it takes time for Al labor recruitment to affect fund performance.
The regression is conducted at the quarterly level since the Al ratio and control variables are

updated quarterly. Standard errors are clustered at the fund family and quarter level.

The regression results are reported in Table 3. Columns (1) to (4) correspond to different
regression specifications. Consistent with the portfolio sorts, the results reveal a strong, sta-
tistically significant positive relationship between quarterly fund abnormal returns in quarter
g + 1 and the Al ratio in quarter ¢ — 1 across all regression specifications. Additionally, the
results are economically meaningful. Given that the standard deviation of the Al ratio is

1.554% (see Table 1), the coefficient in Column (4) suggests that a l-standard-deviation
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higher AI ratio is associated with an annualized 61.4 basis points higher return (0.0987 X

1.554 x 4 = 0.614).

It is worth noting that the regression specifications in Column (3) and Column (4) include
fund fixed effects, while Column (1) and Column (2) do not. According to Péstor et al. (2017),
with fund fixed effects, the coefficient beta is a weighted average, across funds, of the slope
estimates from fund-by-fund time-series regressions. The regression results in Table 3 show
that the Al-performance relationship is stronger in the time series than in the cross section.

In other words, as mutual funds gradually adopt Al technology, their performance improves.

Overall, the results reported in this subsection and the previous subsection show that the
Al measure I constructed can predict future mutual fund performance, and this predictability

persists even after adding control variables.

3.4 Time-Varying Predictability

The results computed so far average across all quarters in my dataset. However, the adoption
of AI technology in the mutual fund industry does not increase linearly. As reported in Figure
2, Al labor recruitment was relatively low before 2016Q4 and increased rapidly thereafter. In
this subsection, I equally separate the whole sample period into two parts: the first half spans
from 2011 to 2016, and the second half from 2017 to 2022. I then repeat the portfolio sorting
and Fama-MacBeth regressions in these two subsamples to determine where the predictive

power comes from.

There are two competing hypotheses. On one hand, because Al became more powerful
after 2016, we would expect return predictability to be stronger in the second half. On
the other hand, AI technology might exhibit a “first mover advantage,” where pioneer Al
adopters earn more profit initially. When all funds adopt AI technology, none may generate

excess returns anymore. In this case, we would expect the return predictability to be stronger

in the first half.
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Table 4 reports the results of a portfolio sorting analysis for different subsamples. The
structure of the table is the same as Table 2. The performance differences in return (alpha)
between the portfolios of high-Al and low-Al funds become more significant during 2017 to
2022.> The monthly performance difference becomes 0.241% for raw returns, 0.262% for
CAPM alphas, and 0.094% for Carhart 4-factor alphas. Meanwhile, the performance differ-
ences are not significant during 2011 to 2016. Table 5 reports the Fama-MacBeth regression
for different subsamples. The structure of the table is the same as Table 3. Consistent with
the portfolio sorts, the Al ratio is significantly positively correlated with future alpha during
2017 to 2022 but cannot predict future alpha during 2011 to 2016. Panel B and Panel C in
Table 6 report the factor loadings for different subsamples. The pattern in SMB loadings is
mainly driven by the sample from 2017 to 2022. All these results support the first hypothesis
that Al is more powerful in generating excess returns after 2016Q4. Given that Al technol-
ogy 1is still rapidly evolving, mutual funds continue to benefit from its use, as we have not
yet reached a steady state. The results in Figure 3 further support this, showing significant
variation in Al usage among mutual fund companies even in 2022Q4. The lengthy process
of developing a mature Al team means that not all mutual funds are yet leveraging Al to

maximize profits.

4 Channel

Having established that the AI ratio can predict the future performance of mutual funds, a
natural follow-up question concerns the underlying mechanism. In Section 2.1, I discussed
several ways mutual funds might take advantage of Al technology. In this section, I test
the hypothesis that mutual funds benefit from Al technology adoption by improving their
information capacity. It is worth noting that all the potential channels are not mutually

exclusive. I provide empirical evidence for one particular channel and do not exclude other

5The monthly raw returns are not significantly different from zero because the stock market fluctuated a
lot during the COVID-19 period, leading to a high standard deviation.
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potential channels (such as algorithmic trading) in my analysis.

4.1 Holding Analysis

It is well-documented that mutual fund managers face constraints on information process-
ing due to limited cognitive resources and time. They can only allocate their attention to
high-priority information, a phenomenon known as “rational inattention” in the literature
(Kacperczyk et al., 2016; Ben-Rephael et al., 2017; Liu et al., 2023).'® However, Al can serve
as powerful tools for gathering and analyzing information, thereby enhancing mutual funds’
information capacity. Moreover, Al is particularly adept at handling large, unstructured al-
ternative data. Massa et al. (2024) study how institutional investors deal with big data and
its impact on market efficiency. Sheng et al. (2024) also show that AI can help hedge fund
managers process a large amount of unstructured data (e.g. conference call), which can aid

managers’ investment decisions.

To test whether mutual funds benefit from adopting Al technology by improving their in-
formation capacity, I focus on mutual funds’ holdings. Cao et al. (2021) trained an Al analyst
to predict stock returns using public information (e.g., corporate disclosures, macroeconomic
indicators, etc.). They find that Al surpasses human analysts when the information is trans-
parent but voluminous, while humans excel when critical information requires institutional
knowledge or subjective judgment. My hypothesis is that if mutual funds increase their in-
formation capacity by adopting Al technology, they will tend to tilt their portfolios toward

stocks with high information intensity, where they have a comparative advantage.'”

To measure the information intensity of a stock, I adopt three measures from Cao et al.

6The concept “rational inattention” was first proposed by Sims (2003) in the field of macro-finance.
Kacperczyk et al. (2016) was the first paper to introduce this concept to the mutual fund literature.

17Some may argue that mutual fund managers could simply trade in stocks where they have an informa-
tional advantage rather than holding them. However, mutual fund literature well documents that managers
tend to hold these stocks. For example, a number of researchers study the geography of mutual fund in-
vestments. Coval and Moskowitz (1999) and Coval and Moskowitz (2001) find that fund managers exhibit
a strong preference for investing in companies headquartered nearby due to their informational advantage.
Additionally, Hong et al. (2005) and Pool et al. (2015) find that the holdings of fund managers who live in
the same city /neighborhood are highly correlated because of social interactions.
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(2021). The first measure is the number of information events, which refers to the number
of firm-specific information events in Capital IQ Key Development data, representing the
volume of available information about the firm. The second measure is firm size. Larger
firms typically have more information available, whereas smaller firms often require more
human subjective judgment. The third measure is firm age. The older a firm is, the more
information tends to be available about it. I aggregate the stock-level measures to the fund

level by taking the value-weighted average across fund holdings:

N
Holding_In formation_Intensity;, = Z w; ke X charateristic; i, (10)
k=1

where w; j, refers to the value of stock k held by fund ¢ at quarter ¢ divided by the total
value of stocks held by fund ¢ at quarter ¢. The term charateristic; ; refers to the three
measures of stock-level information intensity. I test whether funds adopting Al technology
hold stocks in which Al has a comparative advantage by estimating the following regression

of stock information intensity on the Al ratio:

Holding_In formation_Intensity,; = o + 3 Al ratio;;—1 + vy Controls;;—1 + 1. + 6; + €4

(11)

where Holding_In formation_Intensity;, is the weighted average of the three measures of
stock-level information intensity, as calculated in the previous equation. I control the fund

fixed effect and time fixed effect in this regression.

Table 7 reports the regression outcomes. Columns (1) and (2) indicate that the average
number of information events of stocks held by funds is approximately 0.7 (0.488 (0.421) x
1.554) higher for a 1-standard-deviation increase in the Al ratio, given that the mean of the
AT ratio is 1.554%. The coefficient is significant at 1% level. Columns (3) and (4) indicate
that the average market capitalization of stocks held by funds is approximately 26 million
dollar (17.894 (16.268) x 1.554) higher for a l-standard-deviation increase in the Al ratio.

Columns (5) and (6) indicate that the average age of stocks held by funds is approximately
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0.22 (0.149 (0.132) x 1.554) higher for a 1-standard-deviation increase in the Al ratio. Taken
together, mutual funds with higher Al ratio tend to tend to tilt their portfolios toward large
stock, old stock and stock with more information events. Overall, these results suggest that
mutual funds adopting AI technology outperform other funds by holding high information

intensity stocks, where they have a comparative advantage.

4.2 Identification

In this subsection, I provide additional evidence that mutual funds with a higher AI ratio
tend to hold high information intensity stocks by utilizing a shock in AI technology. My
hypothesis is that when Al technology improves, mutual funds with a high AT labor stock

will hold higher information intensity stocks, whereas funds with low Al labor stock will not.

For the AI technology shock, I rely on the publication of the Transformer architecture in
June 2017.'® The Transformer is a deep learning architecture developed by Google, based
on the multi-head attention mechanism, and was proposed in the paper “Attention Is All
You Need”. This paper has become one of the most highly cited in the field of AT (128,482
citations by August 2024). Since its publication, the Transformer architecture has become
a foundational architecture in various areas of Al, including machine learning, natural lan-
guage processing, and image recognition. Most pre-trained models are based on Transformer

architecture, such as Clip and GPT.

I run difference-in-difference regressions to test the hypothesis. The treatment group
consists of funds whose Al ratio is above the median, while the control group consists of
funds whose Al ratio is below the median in June 2016.'° I include fund fixed effects and

time fixed effects in the regression as control variables. The sample period spans from 2016Q3

18 Another breakthrough in Al technology is ChatGPT, launched on November 30, 2022. I do not use it
because my sample ends in December 2022.

9The result remains robust if I change the formation time, as the Al ratio has an average autocorrelation
higher than 90%.
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to 2018Q2, covering one year before and after the cutoff. The regression is specified as follows:

Holding_In formation_Intensity;; = a + [ (Post,_1 x Treatment;) + vy Controls;;—1 +n + 6; + €4
(12)

where the dependent variable Holding_In formation_Intensity; ; is the same as before. T'reatment,;
equals to one if fund i’s Al ratio is above the median in June 2016. Post; equals one from
2017Q2 onward (in other words, Post;_; equals one from 2017Q3). All the independent vari-
ables and control variables are lagged by one quarter, as it takes time for the AI technology
shock to become effective. I verify the parallel assumption by plotting the average dependent
variables of the treatment group and control group. Figure 4 shows that there is almost no

pre-trend for the different dependent variables before 2017Q2.

Table 8 reports the results of the difference-in-difference regressions. The results show
that following the breakthrough in Al technology, mutual funds with a higher AI labor stock
tend to shift their portfolio allocations toward larger stocks and those with more information
events. In the four quarters after the publication of the Transformer model, the average
number of information events and market capitalization of stocks held by the treatment
group are 0.9 and 6.6 million dollars higher, respectively, compared to those held by the
control group. Another dependent variable, the age of the stock, becomes insignificant in
this setting. These results suggest that mutual funds with higher AI labor stock tilt their

portfolios toward stocks with high information intensity after the Al technology shock.

4.3 Future Performance of Stock Purchased/Sold by AI Fund

The previous two subsections provide evidence that mutual funds tend to hold stocks with
higher information intensity after adopting AI technology. I investigate whether the out-
performance of these Al-enhanced mutual funds is driven by trading in stocks with higher
information intensity. My methodology largely follows Bai et al. (2023). If the outperfor-

mance is indeed attributable to high information intensity stocks, I expect trades in these
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stocks to be more profitable than those in stocks with lower information intensity.

First, I sort all mutual funds into quintiles based on their Al ratio, following the method
outlined in Section 3.2. I then aggregate the holdings of all mutual funds within each quintile
into a single portfolio. Next, I calculate the change in portfolio weight resulting from active
rebalancing, categorizing these changes into buy and sell trades. Specifically, I begin by
computing the portfolio’s hypothetical weights for a given quarter, assuming no trading

occurs, denoted as wy .

Wet—1(1 4 ry)
E/]gvzl Wet—1(1 4 7riy)

Wit = (13)
where wy, ;1 is portfolio Q’s weight in stock k& at the end of quarter ¢ — 1 and 7., is stock
k’s return in quarter ¢. My calculation for wy, indicates that if no trades occur in quarter
t, changes in portfolio weights are solely driven by stock returns during that period. Next,
I determine “buy” and “sell” trades by comparing the hypothetical portfolio weights with
the active portfolio weights. Specifically, Wy, < wy, suggests a “buy” trade, increasing the
weight associated with stock k, while wy,; > wy; indicates a “sell” trade in stock k. I separate
the stocks into two categories (high/low information intensity) based on the median number
of information events each quarter. I use the characteristic-selectivity measure developed
by Daniel et al. (1997), hereafter referred to as DGTW, to assess stock returns across dif-
ferent characteristics. Finally, I calculate the future performance of buy versus sell trades
within each Al quintile portfolio. Specifically, for each portfolio, I compute the mean quar-
terly DGTW benchmark-adjusted returns of stocks that were purchased or sold during the

preceding quarter.

My findings reveal a significant difference in stock performance between buy and sell
trades among funds with a high Al ratio, especially when trading stocks with high information
intensity. Table 9 presents the results. In the top quintile (Q5), the average quarterly DGTW-
adjusted return is 0.62% for stocks purchased with high information intensity, compared to

-0.49% for stocks sold with high information intensity. This indicates that superior trade
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performance for funds with a high Al ratio is primarily driven by their buy trades. Moreover,
this performance is enhanced by trades in high information intensity stocks. For example,
in Column (3), the difference between buy and sell trades is 1.11% (t-stat=2.49) for stocks
with high information intensity, while it becomes -0.23% (t-stat=-0.91) for stocks with low
information intensity. Overall, this evidence supports that the outperformance of mutual

funds adopting Al technology stems from trading stocks with high information intensity.

4.4 Manager Skill: Stock Picking and Market Timing

The results in the previous subsections show that mutual funds improve their information
capacity after adopting Al technology, evidenced by the information intensity of their stock
holdings. In this subsection, I investigate the source of outperformance for these Al-enhanced
mutual funds using another method. Kacperczyk et al. (2014) evaluate mutual fund manager
skill by decomposing fund performance into two parts: stock picking and market timing. If
adopting Al technology provides mutual funds with an advantage in analyzing stocks with
high information intensity, I expect that the outperformance should come primarily from

improved stock picking skills.

I calculate the stock picking skill and market timing skill in fund-quarter level following
the method of Kacperczyk et al. (2014). Market timing skill refers to a manager’s ability
to adjust their portfolio’s exposure to the market according to prevailing market conditions.

Timing,; denotes the market timing skill for fund 7 at quarter ¢, calculated as follows:

N;

Timing,, = > (wike — wf') (BreREL) (14)

k=1

where Sy is the covariance of stock k’s return, Ry, with the market return, R™, divided by
the variance of the market return. It is calculated using a 60 months moving window (with
at least 24 months of nonmissing return). The portfolio weight, denoted as wj ., is the

fraction of fund ¢’s total asset held in stock k£ at the start of quarter ¢. The market weight,

29



denoted as wy’;, is the fraction of total market capitalization in stock k. Similarly, stock
picking skill refers to a manager’s ability to adjust holdings of individual stocks based on
their idiosyncratic returns relative to the broader market. Picking;, denotes stock picking

skill for fund ¢ at quarter ¢, calculated as follows:

N;

Piijingi’t == Z(wi7k7t - ng‘t)(Rk,t-l—l — 6k,tRﬁ-1> (15)
k=1

A fund with a high stock picking ability overweighs stocks that subsequently have high
idiosyncratic returns and underweights those with low idiosyncratic returns. The summary

statistic of these two skills are also reported in Panel A of Table 1.

Similar to Equation (11), I test whether funds adopting AT technology have a higher stock
picking skill or market timing skill by estimating the following regression of skills on the Al

ratio:
Skill,y = a+ B Al ratio; 4 +yControls; ;—1 + 1 + 0; + €4 (16)

where Skill; ; refers to the stock picking skill or market timing skill of fund ¢ at quarter ¢, as
calculated in the previous equations. I also control the fund fixed effect and time fixed effect

in this regression.?’

Table 10 reports the regression outcomes. The results show that mutual funds adopting
AT technology exhibit higher skill in stock picking. Given that the standard deviation of the
AT ratio is 1.554% (see Table 1), the coefficient in Column (2) suggests that a 1-standard-
deviation higher Al ratio is associated with a 46.6 basis point annual advantage in stock
picking (0.075 x 1.554 x 4 = 0.466). The coefficients in Column (3) and Column (4) are also
positive but not significant, indicating that mutual funds might slightly improve their market
timing skill by adopting AI technology. All these results are consistent with the hypothe-

sis that mutual funds benefit from AI technology adoption by improving their information

20Kacperczyk et al. (2016) find that mutual funds allocate more attention on stock picking in booms and
market timing in recessions. I control this effect by adding time fixed effect into the regression.
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capacity.

5 Impact on Mutual Fund Managers

Another important research question in the Al area is to study its impact on the labor
market, as many people fear that Al will take their jobs. For example, Acemoglu et al.
(2022) examines the impact of Al-labor substitution on employment and wage growth. In this
section, I explore how Al technology adoption affects mutual fund managers. To answer this
question, I investigate the relationship between the Al ratio and manager turnover at mutual
funds. On one hand, if mutual funds rely more on Al technology, they may reduce their
dependence on individual fund managers. On the other hand, Al technology may not easily
threaten mutual fund managers, as this is a high-tech occupation that requires numerous soft
skills. Therefore, whether the AI ratio can predict higher fund manager turnover remains an

open question.

I construct two manager turnover variables as dependent variables, following Kostovetsky
and Warner (2015).%! The first variable is a manager turnover dummy, which takes a value of
one if a manager departs (and the fund survives) in a given quarter and zero otherwise. The
second variable, manager turnover, is an adjustment of the manager turnover dummy based
on the total number of managers. For instance, if two out of five managers leave, the manager
turnover equals 0.4 for that quarter. To examine the relationship between manager turnover
and Al ratio, I employ both OLS and probit regressions, with manager turnover (dummy) as
the dependent variable and Al ratio as the main independent variable. Following Kostovetsky
and Warner (2015), I control for several variables that can affect manager turnover, such as
team size and past performance (measured by alpha over the past year). The Al ratio is also

lagged by one more quarter.

Table 11 reports the regression outcomes. I find a negative relationship between manager

21The historical mutual fund managers list is obtained from Morningstar Direct and linked to CRSP using
CUSIP.
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turnover and fund size, and a positive relationship between manager turnover and fund
family size/team size. All these findings are consistent with Kostovetsky and Warner (2015).
However, the main independent variable, the Al ratio, is insignificant in all the regression
specifications, indicating that the Al ratio cannot predict manager turnover. These results
suggest that although Al technology is powerful, it has not yet threatened the positions of

mutual fund managers.

6 Conclusion

In this paper, I study how AI technology, one of the most important new technologies of
the last decade, shapes the mutual fund industry. I develop a new measure of Al technology
adoption for mutual funds, derived from Al labor recruitment data based on job postings from
Burning Glass Technologies. This unique measure allows me to test whether the adoption
of AT technology can predict mutual fund performance. I find that a long-short portfolio,
which goes long in the top quintile of funds with the highest Al ratio and short in the bottom
quintile of funds with the lowest Al ratio, delivers an annual excess return of 156 basis points.

This predictability primarily comes from the second half of the sample period.

I also study the underlying mechanism of the return predictability. I test the hypothesis
that mutual funds benefit from adopting Al technology by improving their information ca-
pacity. I provide empirical evidence for this channel by showing that mutual funds with a
high Al ratio tilt their portfolios toward stocks with high information intensity, where they
have a comparative advantage. These results suggests that the large-scale use of Al by insti-
tutional investors may also affect the price informativeness of the stock market. I leave this

question for future research.
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Figure 1: Data Cleaning Process This figure shows the process to clean the Burning
Glass data and indentify Al jobs. It also shows the number of observations in each step. The

sample period is from 2010 to 2022.
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Figure 2: AI Labor Recruitment These figures plot the Al labor recruitment in the mutual
fund industry quarterly. In the first figure, the red line is the total number of AI job posting
for all the fund companies, correspond to the right y-axis. The blue line is the total number
of all the job posting, correspond to the left y-axis. In the second figure, the y-axis is the
total number of Al job posting divided by total number of job posting. The dash line stands
for 2016Q4.
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Figure 3: AI Ratio Distribution. These figures plot the distribution of Al ratio across
all mutual funds at different points in time. The x-axis represents the Al ratio, while the
y-axis indicates the number of funds in each bin. The four subfigures correspond to the

distributions in 2016Q4, 2018Q4, 2020Q4, and 2022Q4, respectively.
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Figure 4: Difference-in-Difference Plot These figures plot the average dependent variables
of the treatment group and control group in the difference-in-difference regressions (e.g.,
Equation 12). The x-axis represents time. In the top panel, the y-axis represents the number
of information events. In the middle panel, the y-axis represents the market cap. In the
bottom panel, the y-axis represents the firm age. The dotted vertical line indicates the event
time, the second quarter of 2017, when the Transformer was proposed.
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Table 1: Summary Statistic

This table reports the summary statistic of fund characteristic. Panel A reports the number
of observation, the mean, the standard deviation and different percentiles. Panel B reports
the correlation matrix of the fund characteristic. A full description of all the variables can
be found in the appendix.

Panel A: Summary Statistic

N Mean Std pl p25 p50 P75 P99
AT ratio (%) 41,121 1.369 1.554 0 0.424 0.889 1.723 8.214
TNA (in millions) 41,121 4,047 11,207 17.80 265 834.6 2,584 82,383
Family size 40,112 279,330 467,368 198 20,789 42,621 383,393 2,254,000
Qret (%) 40,974 2.640 8.991 -25.23  -0.563 3.452 7.515 26.13
Flow 40,848  -0.0009  0.106 -0.285  -0.037  -0.0164 0.0124 0.599
Num holdings 41,014 240.1 456.7 1 53 92 201 2,570
Alpha (%) 38,542 -0.119 2.648 -9.399  -1.357 -0.00745 1.236 7.759
Turnover (%) 30,332 0.562 0.449 0.0300  0.240 0.460 0.760 2.340
Expenses (%) 41,109 0.568 0.469 0 0 0.659 0.960 1.560
Age (in years) 41,110 17.20 11.89 1 9.005 14.26 22.52 56.79
Activeshare 32,048 0.854 0.158 0.336 0.787 0.904 0.977 0.999
Holding Marketcap 37,050 190.4 252.0 1.332 9.895 101.9 252.9 1,114
Holding Information 37,050 33.08 18.91 9.455 14.74 32.26 47.09 83.15
Holding Age 37,050 29.25 9.772 11.21 21.94 27.70 35.06 56.46
Timing (%) 37,359 2.497 7.506 -20.57  -0.010 3.202 6.377 20.18
Picking (%) 37,359  -0.0425  3.718 -10.03  -1.641 0 1.468 9.876
Manager Turnover 38,635 0.0225 0.114 0 0 0 0 0.500

Panel B: Correlation

Al ratio TNA Age Qret Flow  Turnover Expenses Activeshare

AT ratio (%) 1

TNA (in millions) 0.138 1

Age (in years) 0.0301 0.329 1

Qret -0.0100  0.0168 0.00177 1

Flow -0.00544 0.00378 -0.132  0.0369 1

Turnover (%) -0.0304  -0.222  -0.0415 0.00781 -0.0293 1

Expenses -0.169 -0.110 0.312  0.00695 -0.0560 0.347 1

Activeshare -0.0617  -0.295 -0.0325 -0.0178 -0.0171 0.240 0.265 1
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Table 2: Portfolio Sorting

This table reports the results of a portfolio sorting analysis. Mutual funds are sorted in-
to 5 portfolios based on their Al measure at the beginning of each semi-year. I calculate
the average performance for each portfolio each month, value-weighted by TNA. The three
columns report the time-series averages of raw returns, CAPM Alpha, and Carhart Alpha,
respectively. All performance measures are expressed as percentages per month. The bottom
row reports the mean monthly return (alpha) differences between the portfolios of high-AT
(top quintile) and low-AI (bottom quintile) funds. t-Statistics are provided in parentheses.

Quintile Raw Return CAPM Alpha Carhart Alpha
1 (Low) 0.822%* -0.180%*** -0.065
(2.233) (-3.540) (-1.585)
2 0.876%* -0.075%* -0.009
(2.455) (-2.136) (-0.272)
3 0.9317%** -0.056 -0.031
(2.655) (-1.250) (-0.708)
4 0.872%* -0.097** -0.034
(2.456) (-2.059) (-0.734)
5 (High) 0.952%% 0.016 0.011
(2.684) (-0.446) (0.348)
Difference: High-low  0.130%*** 0.164%** 0.076**
(3.127) (4.202) (2.406)
Observation 144
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Table 3: AI and Future Performance

This table reports the results of the Fama-MacBeth regression of quarterly Carhart alphas
(in percentage) in quarter g+1 on fund characteristics measured at the end of quarter q and
AT ratio measured at the end of quarter g-1 (Equation 9 in Section 3.3). Different columns
include various control variables and fixed effects. The “Alpha” in the second row refers to
the Carhart alpha from the previous quarter, included as a control variable. Standard errors
are clustered at the fund family and quarter levels; t-statistics are reported in parentheses.

Carhart Alpha (1) (2) (3) (4)
AT ratio (%) 0.0663***  0.0603***  (0.0813**  0.0987**
(3.13) (3.12) (2.56) (2.16)
Alpha (%) 0.0083 -0.0353
(0.22) (-0.94)
Logsize -0.0074 -0.3645%**
(-0.51) (-3.30)
Logage -0.0751%* 0.1631
(-2.07) (0.56)
Flow (%) [1.2317%% ~1.2009%**
(-6.79) (-6.39)
Expenses (%) -0.097 -0.381**
(-1.42) (-2.63)
Logfamilysize 0.0125 0.0632
(1.46) (1.13)
Observations 35,559 34,173 35,546 34,159
R-squared 0.104 0.108 0.143 0.150
Fund FE NO NO YES YES
Time FE YES YES YES YES
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Table 4: Portfolio Sorting: Different Subsample

These tables report the results of a portfolio sorting analysis for different subsample. Panel
A reports the results in sample period from 2011 to 2016. Panel B reports the results in
sample period from 2017 to 2022. Mutual funds are sorted into 5 portfolios based on their
Al measure at the beginning of each semi-year. I calculate the average performance for
each portfolio each month, value-weighted by TNA. The three columns report the time-series
averages of raw returns, CAPM Alpha, and Carhart Alpha, respectively. All performance
measures are expressed as percentages per month. The bottom row reports the mean monthly
return (alpha) differences between the portfolios of high-Al (top quintile) and low-Al (bottom
quintile) funds. t-Statistics are provided in parentheses.

Panel A: Sample Period 2011-2016

Quintile Raw Return CAPM Alpha Carhart Alpha
1 (Low) 0.897** -0.145%#* -0.088*
(2.182) (-3.010) (-1.808)
2 0.898** -0.122%* 0.008
(2.193) (-2.217) (0.164)
3 1.001°** -0.049 0.004
(2.488) (-0.809) (0.071)
4 0.934** -0.109** 0.012
(2.259) (-2.100) (0.254)
5 (High) 0.920** -0.075%* -0.029
(2.266) (-2.560) (-0.903)
Difference: High-low 0.024 0.070 0.059
(0.519) (1.550) (1.356)
Observation 72
Panel B: Sample Period 2017-2022
Quintile Raw Return CAPM Alpha Carhart Alpha
1 (Low) 0.745 -0.216%* -0.041
(1.198) (-2.374) (-0.613)
2 0.853 -0.026 -0.028
(1.435) (-0.615) (-0.593)
3 0.857 -0.062 -0.068
(1.469) (-0.950) (-0.951)
4 0.807 -0.084 -0.083
(1.376) (-1.055) (-1.019)
5 (High) 0.986 0.045 0.053
(1.666) (0.683) (0.963)
Difference: High-low — 0.241%** 0.262%%* 0.094**
(3.533) (4.196) (2.029)
Observation 72
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Table 5: AI and Future Performance: Different Subsample

These tables report the results of the Fama-MacBeth regression of quarterly Carhart alphas
(in percentage) in quarter g+1 on fund characteristics measured at the end of quarter q and
AT ratio measured at the end of quarter g-1. Panel A reports the results in sample period
from 2011 to 2016. Panel B reports the results in sample period from 2017 to 2022. Different
columns include various control variables and fixed effects. Standard errors are clustered at
the fund family and quarter levels; t-statistics are reported in parentheses.

Panel A: Sample Period 2011-2016

Carhart Alpha (1) (2) (3) (4)
AT ratio (%) 0.0354 0.0275 0.0245 -0.0070
(1.62) (1.63) (0.28) (-0.07)
Alpha (%) -0.0953 -0.1361**
(-1.64) (-2.24)
Logsize -0.0372%** -0.9742%**
(-3.68) (-3.59)
Logage -0.0282 0.5703
(-0.46) (1.06)
Flow (%) ~1.5240%% ~1.3693%%x
(-5.95) (-4.44)
Expenses (%) -0.133 -0.655%*
(-1.59) (-2.45)
Logfamilysize 0.0172 0.0998*
(1.39) (1.84)
Observations 14,636 14,127 14,617 14,107
R-squared 0.073 0.088 0.111 0.138
Panel B: Sample Period 2017-2022
Carhart Alpha (1) (2) (3) (4)
AT ratio (%) 0.0737%%%  0.0625***  0.1175%*  0.1314**
(3.12) (3.08) (2.23) (1.99)
Alpha (%) 0.0894* 0.0177
(1.88) (0.37)
Logsize 0.0154 -0.5150**
(0.63) (-2.42)
Logage -0.1013*** 0.2882
(-2.97) (0.49)
Flow (%) 10.8288%** ~0.7966%*
(-3.44) (-2.60)
Expenses (%) -0.092 -0.216
(-0.91) (-0.85)
Logfamilysize 0.0037 -0.1620
(0.46) (-0.80)
Observations 19,473 18,631 19,466 18,623
R-squared 0.129 0.139 0.188 0.199
Fund FE NO NO YES YES

Time FE YES 46yES YES YES




Table 6: Portfolio Sorting: Factor Loading

This table summarizes the factor loadings from Carhart four-factor model regressions using
net-of-expenses returns. Mutual funds are sorted into 5 portfolios based on their Al measure
at the beginning of each semi-year. The factor loadings are calculated using the daily
returns for each fund each quarter. I calculate the average factor loading for each portfolio
each quarter, value-weighted by TNA. Panel A reports the results for the full sample. Panel
B reports the results for the sample period from 2011 to 2016. Panel C reports the results
for the sample period from 2017 to 2022.

Panel A: Full Sample

Group MKT SMB HML MOM
1 0.9503 0.0963 0.0474 -0.0101
2 0.9522 0.0488 -0.0269 0.0000
3 0.9570 0.0333 -0.0575 0.0145
4 0.9557 0.0260 -0.0581 0.0089
5 0.9627 0.0392 0.0183 0.0047
Panel B: Sample Period 2011-2016
Group MKT SMB HML MOM
1 0.9410 0.0186 -0.0126 -0.0108
2 0.9573 0.0658 -0.0262 -0.0043
3 0.9702 0.0440 -0.0893 0.0190
4 0.9654 0.0172 -0.0430 0.0170
5 0.9662 0.0218 -0.0046 0.0077
Panel C: Sample Period 2017-2022
Group MKT SMB HML MOM
1 0.9600 0.1774 0.1100 -0.0095
2 0.9469 0.0310 -0.0276 0.0046
3 0.9433 0.0220 -0.0243 0.0098
4 0.9456 0.0352 -0.0739 0.0005
5 0.9591 0.0574 0.0422 0.0016
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Table 7: Holding Analysis

This table reports the impact of AI on mutual fund holding. I choose three stock level
measures and aggregate to fund level by calculating the weighted average. The three measures
are: number of information event, market capitalization and age of stock The independent
variable is the Al ratio. All the independent variable and control variables are lagged for one
quarter. A full description of all the variables can be found in the appendix. Standard errors
are clustered at the fund family and quarter level; t-statistics are reported in parentheses.

Information Event Marketcap Age of Stock

(1) (2) (3) (4) (5) (6)
AT ratio (%) 0.488***  (0.421***  17.894**  16.268**  0.149** 0.132*
(2.89) (2.75) (2.05) (2.05)  (2.04)  (1.99)

Qret (%) 0.061 0.978 -0.004
(0.58) (0.47) (-0.25)
Logsize 1.149%* 31.451%+* -0.085
(2.41) (3.64) (-0.84)
Logfamilysize -0.912* -8.946 0.309*
(-1.86) (-1.21) (1.72)
Logage -1.282%* -33.516** 0.045
(-2.23) (-2.35) (0.12)
Flow -2.362%** -26.128%* 0.288
(-3.72) (-2.19) (0.86)
Expenses (%) -0.236 16.71 -0.285
(-0.37) (0.99) (-0.59)
Observations 35,562 34,456 35,270 34,163 35,191 34,084
R-squared 0.840 0.841 0.773 0.779 0.912 0.913
Fund FE YES YES YES YES YES YES
Time FE YES YES YES YES YES YES
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Table &: Identification: Difference in Difference

This table reports the difference-in-difference regressions testing the impact of an Al technol-
ogy shock on mutual funds’ holdings. The treatment group consists of funds whose Al ratio
was above the median in June 2016. The cutoff point is June 2017, when the transformer
model was published. I choose three stock level measures and aggregate to fund level by
calculating the weighted average. The three measures are: number of information event,
market capitalization and age of stock. The independent variable is the Al ratio. All the
independent variable and control variables are lagged for one quarter. A full description of
all the variables can be found in the appendix. Standard errors are clustered at the fund
family and quarter level; t-statistics are reported in parentheses.

Information Event Marketcap Age of Stock
(1) (2) (3) (4) (5) (6)
Postx Treatment ~ 1.017*%*  (.872*%%*  7.308%**  6.564***  (.031 0.037
(3.17) (3.44) (2.98) (3.05) (0.27) (0.36)
Qret (%) 0.518%** 1.853 0.001
(4.18) (1.88) (0.09)
Logsize 0.551 12.314 0.235
(0.62) (1.47) (1.39)
Logfamilysize 0.322 -0.315 0.229
(0.63) (-0.10) (0.93)
Logage -7.160%** -38.463%F* -1.989%***
(-6.30) (-3.89) (-3.29)
Flow -0.449 4.625 0.316
(-0.73) (0.95) (0.76)
Expenses (%) -2.065 -15.90** 0.588*
(-1.31) (-2.19) (1.95)
Observations 5,124 5,000 5,123 4,999 5,071 4,947
R-squared 0.898 0.905 0.931 0.933 0.974 0.974
Fund FE YES YES YES YES YES YES
Time FE YES YES YES YES YES YES
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Table 9: Future Performance of Buy versus Sell in each AI Quintile

This table presents the DGTW characteristic-adjusted performance of stocks that were either
purchased or sold by mutual funds, which are sorted based on their Al ratio as described
in Section 3.2. Mutual funds are sorted into 5 portfolios based on their AI measure at the
beginning of each semi-year. I aggregate the holdings of each portfolio into a single portfolio.
Within each portfolio, fund trades are further categorized into buy and sell trades, as outlined
in Section 4.3. Additionally, all stocks are classified into two categorieshigh or low information
intensitybased on whether the number of information events each quarter is above or below
the median. Columns (1) to (3) report the time-series mean quarterly DGTW benchmark-
adjusted returns of trades for stocks with information events above the median. Columns (4)
to (6) report the time-series mean quarterly DGTW benchmark-adjusted returns of trades
for stocks with information events below the median.

Quintile Stock with more Infor Events Stock with less Infor Events
1) 2) () G (6)
Buy Sell Difference Buy Sell Difference
All Funds  0.0024  -0.0022*  0.0047** 0.0019  0.0022 -0.0002
(1.53) (-1.70) (2.56) (0.66)  (0.69) (-0.21)
1(Low) 0.0008 0.0001 0.0006 0.0003  0.0042 -0.0039
(0.39) (0.11) (0.27) (0.09) (1.16) (-1.25)
2 0.0013 -0.0015 0.0028 0.0045 -0.0014 0.0059
(0.82) (-0.63) (0.98) (1.60)  (-0.38) (1.60)
3 -0.0001  -0.0003 0.0002 -0.0007 -0.0008 0.0002
(-0.04) (-0.15) (0.07) (-0.20)  (-0.24) (0.06)
4 0.0012 -0.0026 0.0038* 0.0040  0.0021 0.0019
(0.66) (-1.63) (1.72) (1.36)  (0.58) (0.59)
5(High) 0.0062** -0.0049*  0.0111** 0.0014  0.0036 -0.0023
(2.21) (-1.74) (2.49) (0.42)  (1.09) (-0.91)
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Table 10: AT and Manager Skill

This table reports the regression results of the manager skills (Equation 15 in Section 4.3).
The dependent variables are Timing and Picking, defined in equations (13) and (14). The
independent variable is the Al ratio. All the independent variable and control variables are
lagged for one quarter. Standard errors are clustered at the fund family and quarter level;
t-statistics are reported in parentheses.

Stock Picking Market Timing

) ® 6 @
ATl ratio (%)  0.028%**  0.075**  0.012  0.019
(3.07) (2.03) (0.51)  (0.97)

Qret(%) -0.065 0.017
(-1.23) (0.51)
Logsize -0.546%** -0.113
(-3.10) (-1.41)
Logfamilysize -0.130 0.046**
(-1.17) (2.32)
Logage 0.180 0.135
(0.68) (1.19)
Flow -0.362 -0.173
(-1.57) (-0.94)
Expense -0.235 0.001
(-1.30) (0.00)
Observations 35,999 34,889 36,031 34,921
R-squared 0.154 0.165 0.905 0.903
Fund FE YES YES YES YES
Time FE YES YES YES YES
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Table 11: Manager Turnover

This table reports the impact of AI on mutual fund manager turnover. The dependent
variable is the manager turnover ratio in Column (1) to (2) and the manager turnover dummy
in Column (3) to (6) The independent variable is the Al ratio. I use probit regression in
Column (5) and Column (6). Standard errors are clustered at the fund family and quarter
level; t-statistics are reported in parentheses.

Dependent Variable Manager Turnover Manager Turnover Dummy

(1) (2) (3) (4) () (6)
AT ratio (%) 0.000 0.001 -0.000 0.001 -0.003 0.018
(0.24)  (0.85)  (-0.15)  (0.81)  (-0.12)  (0.77)
Pastyearalpha (%) -0.000 -0.000 -0.000
(-1.08) (-0.82) (-0.62)
Logsize -0.003*** -0.004%** -0.044%**
(-5.07) (-3.50) (-4.10)
Logfamilysize 0.002%** 0.004*** 0.027**
(5.17) (3.38) (2.35)
Logage 0.002 -0.002 -0.027
(1.18) (-0.52) (-0.80)
Team Size 0.002%** 0.017%%* 0.115%%*
(3.49) (8.45) (18.27)
Observations 35,962 30,976 35,962 30,976 35,962 30,976
R-squared 0.004 0.007 0.006 0.033
Time FE YES YES YES YES YES YES
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A Variable Definitions
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Name Definition Sources

The measure of Al intensity of a fund (fund company),
Al ratio calculated by the AI labor stock divided by the total — Burning Glass

labor stock
Net flow into the fund/share class divided by lagged T-

Flow NA, adjusted by M&A (Equation 1) CRSP
Activesh The active share calculated from the fund holding fol- Rofiniti
cHvestare lowing Doshi et al. (2015). CHIHY
Alpha Return of fund adjusted by Carhart four factor model CRSP
Pastyearalpha The alpha of a fund in the past one year CRSP
Logage The natural logarithm of fund age (in year) CRSP
Logsize The natural logarithm of fund TNA CRSP
Logfamilysize The natural logarithm of fund familu total TNA CRSP
Turnover The turnover rate of a fund/share class CRSP
Expenses The expense ratio of a fund/share class CRSP
Holding Marketcap The weighted average marketcap of the holding of a fund Refinitiv& CRSP
: ) The weighted average number of information events of :
Holding Information Event the holding of a fund Capital 1Q
Holding Age of Stock The weighted average firm age of the holding of a fund Refinitiv& CRSP
Stocking Picking The stock picking skill of a manager (Equation 13) Refinitiv& CRSP
Market Timing The market timing skill of a manager (Equation 14) Refinitiv& CRSP
Team Size The number of mutual fund managers in a fund. Morningstar
Manager turnover A varl'able equals to 1/Team Size if a fund manager Morningstar
leaves in that quarter.
Manager turnover dummy Dummy that euqals one if the a fund manager leaves in Morningstar

that quarter.
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B Indentify AI jobs

Table 12: Examples of skills with high AI score and low AI score

This table shows some examples of skills from Burning Glass job postings. The two leftmost
columns display 20 skills with high AI scores, while the two rightmost columns display 20
skills with low AI scores. The Al scores of the corresponding skills are also reported.

High AT skill Al score Low Al skill Al score
Artificial Intelligence 1 Credit Risk 0.01917
Machine Learning 1 Risk Management 0.018852
Natural Language Processing 1 Workflow Management 0.018774
Data Science 0.494301 Change Management 0.018208
Unstructured Data 0.466061 Regulatory Compliance 0.018174
Scala (Programming Language) 0.32161  Equities 0.017872
Algorithms 0.29445  Asset Management 0.01779
R (Programming Language) 0.285907 Decision Making 0.017678
Big Data 0.28414  Portfolio Management 0.01756
Data Engineering 0.268801 Microsoft Excel 0.017403
Advanced Analytics 0.214577 Risk Mitigation 0.017251
Statistical Modeling 0.210637 Risk Appetite 0.017209
Distributed Computing 0.188049 Management 0.017078
Apache Kafka 0.187259 Finance 0.016926
Python (Programming Language) 0.185729 Investments 0.016673
MATLAB 0.175258 Accountability 0.016358
Data Mining 0.1621  Project Management 0.016309
Applied Mathematics 0.157066 Internal Auditing 0.015974
Model Risk Management 0.15424  Leadership 0.015913
Statistics 0.151451 Sales Prospecting 0.013233
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Table 13: Examples of jobs with high AI score before cleaned by GPT

This table shows ten examples of jobs with high Al scores in Burning Glass job postings.
The four columns report the company name, skill requirements, job title, and the Al score.

These jobs have not been evaluated by GPT-4 yet.

Company Name

Job Skills

Job Title

AT Score

Truist Financial

Machine Learning

ML Default Support Specialist 1T

1.00

JPMorgan Chase

Machine Learning

Consumer & Community Bank-
ing - Card Risk Machine Learn-
ing - Sr. Associate

1.00

Bank of America

Artificial Neural Networks
Unsupervised Learning
Machine Learning Algorithms
Machine Learning
TensorFlow

Deep Learning

Artificial Intelligence

Data Analysis

Data Scientist - Machine Learn-
ing/AI/Python

0.68

Fidelity Investments

Algorithms

Python (Programming Language)
Knowledge Graph

Research Papers

Reinforcement Learning

Data Analysis

Question Answering

Machine Learning

Chatbot

TensorFlow

Conversational Al

Deep Learning

Natural Language Processing
Apache MXNet

Elasticsearch

Keras (Neural Network Library)
Artificial Intelligence

Senior Data Scientist

0.55

BlackRock

Equities

Python (Programming Language)
Portfolio Optimization
Mathematical Modeling
Mathematics

Statistics

Machine Learning

Natural Language Processing

Vice President, Systematic Ac-
tive Equity Team

0.31

o6
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Company Name

Job Skills

Job Title AT Score

Goldman Sachs

Probability And Statistics
Financial Modeling

Machine Learning Algorithms
Statistics

Program Process Monitoring
Portfolio Management
Machine Learning

Java (Programming Language)
Predictive Modeling
TensorFlow

Natural Language Processing
Production Process

Scripting

PyTorch (Machine Learning Library)
Keras (Neural Network Library)
Computational Statistics

Risk Modeling

Economics

Computer Science

Credit Risk Modeling
Mathematical Finance

R (Programming Language)

Transaction Banking Data Sci- 0.29
entist / Quantitative Engineer

Lending Associate

BlackRock

Portfolio Management

Python (Programming Language)
Financial Economics
Mathematics

RStudio

Econometrics

Natural Language Processing
MATLAB

FEconomics

Artificial Neural Networks

Associate, Portfolio Manager 0.25

The Vanguard Group

Finance

Fixed Income

Equities

Python (Programming Language)
Machine Learning

Amazon Web Services

Artificial Intelligence

Advanced Analytics

Investment Management

Risk Management

ML Engineer - Investment 0.24
(Python/AWS)

o7
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Company Name

Job Skills Job Title

AT Score

Morgan Stanley

Asset Allocation ESG Data Specialist
Asset Classes

Research

Presentations

Procurement

Statistical Software

Environmental Social And Corporate
Governance (ESG)

Artificial Intelligence

Forecasting

Statistical Programming

Data Strategy

R (Programming Language)

0.13

T. Rowe Price Group

Object-Oriented Programming (OOP)  Lead Site Reliability Engineer
Research

Management,

Application Programming Interface
(API)

Microservices

Application Development
Automation

Unix

Tooling

Consensus Protocol

Linux

Mentorship

Multi-Tenant Cloud Environments
Systems Development Life Cycle
Python (Programming Language)
Prometheus (Software)

Java (Programming Language)
Hybrid Cloud Computing
Operations

Observability

Scalability

Scripting

Amazon Web Services

Business Strategies

Artifactory

Site Reliability Engineering
Grafana

0.08
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Forget all your previous instructions. Your task is to assess the following
Finance job titles. For each of them, Answer "Not asset management” if the
job is impossible to belong to asset management sector, "Asset
management” if the job is possible to belong to asset management sector.
Answer "Asset management” if you are not sure. Provide your response in
the format: “Job Title: [Asset management or not]” without description.

ML Default Support Specialist Il

Consumer & Community Banking - Card Risk Machine Leaming - Sr.
Associate

Data Scientist - Machine Leaming/Al/Python

Senior Data Scientist

Vice President, Systematic Active Equity Team

Transaction Banking Data Scientist / Quantitative Engineer Lending Associate
Associate, Portfolio Manager

ML Engineer - Investment (Python/AWS)

ESG Data Specialist

Lead Site Reliability Engineer

@ GPT-4  Poe

ML Default Support Specialist |l: Not asset management

Consumer & Community Banking - Card Risk Machine Learning - 5r. Associate: Not
asset management

Data Scientist - Machine Learning/Al/Python: Asset management

Senior Data Scientist: Asset management

Vice President, Systematic Active Equity Team: Asset management

Transaction Banking Data Scientist / Quantitative Engineer Lending Associate: Not
asset management

Associate, Portfolio Manager: Asset management

ML Engineer - Investment (Python/AWS): Asset management

ESG Data Specialist: Asset management

Lead Site Reliability Engineer: Asset management

Figure 5: Determine the Asset Management Industry This figure illustrates how to
determine whether a job belongs to the asset management sector or not using GPT-4. The
content in blue represents the input, which includes ten jobs and the prompt. The content
in white is the response from GPT-4. These ten jobs are the same as the ten examples in
Table 10.
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Forget all your previous instructions. Your task is to evaluate the following list
of job titles from the finance sector. For each title, categorize it as "Al
related,” “strongly Al related,” "weakly Al related,” or "Not Al related,” based
on the relevance of Al skills to the job. Provide your response in the format:
“Job Title: [Al-related category]” without description.

Data Scientist - Machine Leaming/Al/Python

Senior Data Scientist

Vice President, Systematic Active Equity Team
Associate, Portfolio Manager

ML Engineer - Investment (Python/AWS)

ESG Data Specialist

Lead Site Reliability Engineer

[5] GPT-4 Poe

Data Scientist - Machine Learning/Al/Python: Strongly Al related
Senior Data Scientist: Strongly Al related

Vice President, Systematic Active Equity Team: Al related
Associate, Portfolio Manager: Weakly Al related

ML Engineer - Investment (Python/AWS): Strongly Al related
ESG Data Specialist: Weakly Al related

Lead Site Reliability Engineer: Not Al related

Figure 6: Determine the AI Job This figure illustrates how to determine whether a job
is an Al job or not using GPT-4. The content in blue represents the input, which includes
seven jobs and the prompt. The content in white is the response from GPT-4. These seven
jobs are the same as the job in asset management industry in the previous figure.
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Panel A: Strongly Al related
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Figure 7: Keywords in the job titles of the categorized strongly AI related and
not Al related This figure shows the keywords in the job titles of different types of jobs
categorized by GPT-4. Larger fonts indicate a higher word frequency.
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Blackrock Al Labor Recruitment

== Total job posting == Total Al job posting
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Figure 8: AI Labor Recruitment: Examples These figure plot the Al labor recruitment
for two asset management companies (Blackrock and T. Rowe Price Group) quarterly. The
red line is the total number of Al job posting for the fund company, correspond to the right
y-axis. The blue line is the total number of all the job posting for that company, correspond

to the left y-axis.
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C Robustness Check: AI Measure

Table 15: AI Measure Correlation

This table reports the correlation matrix of AI measures using different cutoffs. The five Al
measures are calculated with cutoffs equal to 0.07, 0.075, 0.08, 0.085, and 0.09, respectively.
For example, a cutoff equal to 0.07 means that a job will be classified as a non-Al job if its
Al score is less than 0.07.

AI0.07 AI0.075 AIO0.08 AI0.085 AI0.09

AL 0.07 1

AT 0.075  0.999 1

AT 0.08 0.996 0.999 1

AT 0.085  0.992 0.996 0.998 1

AI.0.09 0.990 0.994 0.996 0.999 1

Robustness Check: Al Measure

== Total Al job posting (0.07) == Total Al job posting (0.075)
== Total Al job posting (0.08) == Total Al job posting (0.085)
== Total Al job posting (0.09)

2000

1500

1000

500

200 210 220 230 240 250

Figure 9: Robustness Check: AI Measure This figure plots the total number of AI job
posting using different cutoffs. The five Al measures are calculated with cutoffs equal to
0.07, 0.075, 0.08, 0.085, and 0.09, respectively. For example, a cutoff equal to 0.07 means
that a job will be classified as a non-Al job if its Al score is less than 0.07.
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D Al Measure and Fund Characteristic

Table 16: The relationship between AI and other variables

This table reports the results of regressing different fund variables on lagged Al ratio. The
dependent varibales are flow, fee, fund age, turnover and Activeshare, respectively. Stan-
dard errors are clustered at the fund family and quarter level; t-statistics are reported in

parentheses.

n @ 3) (4) (5)
Dependent Variables Flow Expenses Fund Age Turnover Activeshare
AT ratio (%) 0.002* -0.000 -0.172 0.010 -0.007
(1.79) (-0.65) (-0.45) (0.31) (-1.20)
Observations 39,509 39,698 39,698 29,389 31,079
R-squared 0.009 0.074 0.014 0.019 0.004
Time FE YES YES YES YES YES
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