所属栏目:资本市场/市场有效性

Nonlinear Relationships in Stock News Co-Occurrence: A Pairs Trading Test on the Constituent Stocks of the Csi 300 Index Based on Deep Reinforcement Learning Methods
认领作者 认领作者管理权限
发布日期:2024年02月25日 上次修订日期:2024年02月25日

摘要

We propose a deep reinforcement learning method to improve pairs trading by identifying nonlinear relationships in stock news. Using the CSI 300 index constituents from 2015 to 2022, we integrated cointegration and news co-occurrence analysis in asset pairing and used a threshold-based approach in trading design. Results showed our NEWS-CO-DRL method, fusing deep learning and news co-occurrence, outperformed in return generation and risk control, indicating its potential for the Chinese A-share market.
展开

论文统计数据

  • 浏览次数:

    1909
  • 下载次数:

    3

Jianhe Liu; Luze Lu; Xiangyu Zong; Ziping Luo Nonlinear Relationships in Stock News Co-Occurrence: A Pairs Trading Test on the Constituent Stocks of the Csi 300 Index Based on Deep Reinforcement Learning Methods (2024年02月25日) https://www.cfrn.com.cn/lw/15535.html

选择要认领的作者1
身份验证1
确认
取消