Factor Timing

  • 详情 Factor Timing in the Chinese Stock Market
    I conduct an exploratory study about the feasibility of factor timing in the Chinese stock market, covering 24 representative and well-identiffed risk factors in ten categories from the literature. The long-short portfolio of short-term reversal exhibits strong and statistically signiffcant out-of-sample predictability, which is robust across various models and all types of predictors. However, such results are not evident in the prediction of all other factors’ long-short portfolios, as well as all factors’ long-wing and short-wing portfolios. The high exposure to the market beta, together with the unpredictability of the market return, explains these failures to some degree. On the other hand, a simple investment strategy based on predicted returns of the reversal factor’s long-short portfolio obtains a signiffcant return three times higher than the simple buy-and-hold strategy in the sample period, with a signiffcant annualized 20.4% CH-3 alpha.
  • 详情 Timing the Factor Zoo via Deep Visualization
    This study reconsiders the timing of the equity risk factors by using the flexible neural networks specified for image recognition to determine the timing weights. The performance of each factor is visualized to be standardized price and volatility charts and `learned' by flexible image recognition methods with timing weights as outputs. The performance of all groups of factors can be significantly improved by using these ``deep learning--based'' timing weights. In addition, visualizing the volatility of factors and using deep learning methods to predict volatility can significantly improve the performance of the volatility-managed portfolio for most categories of factors. Our further investigation reveals that the timing success of our method hinges on its ability in identifying ex ante regime switches such as jumps and crashes of the factors and its predictability on future macroeconomic risk.