Forecast

  • 详情 Predicting Stock Price Crash Risk in China: A Modified Graph Wavenet Model
    The stock price of a firm is dynamically influenced by its own factors as well as those of its peers. In this study, we introduce a Graph Attention Network (GAT) integrated with WaveNet architecture—termed the GAT-WaveNet model—to capture both time-series and spatial dependencies for forecasting the stock price crash risk of Chinese listed firms from 2012 to 2021. Utilizing node-rolling techniques to prevent overfitting, our results show that the GAT-WaveNet model significantly outperforms traditional machine learning models in prediction accuracy. Moreover, investment portfolios leveraging the GAT-WaveNet model substantially exceed the cumulative returns of those based on other models.
  • 详情 Will the Government Intervene in the Local Analysts’Forecasts? Evidence from Financial Misconduct in Chinese State-Owned Enterprises
    This paper explores the impact of government intervention on local analysts’ earnings forecasts, based on a scenario of financial misconduct in Chinese state-owned enterprises (SOEs). The results show that, under the influence of the government, local analysts’ earnings forecasts for SOEs with financial misconduct are less accurate and more optimistically biased. Further heterogeneity analysis reveals that forecast bias by local analysts is greater when officials have stronger promotion incentives, when regions are less market-oriented and have a larger share of the state-owned economy, and when SOEs contribute more to taxation and employment. In further analysis, we find that local analysts have a more optimistic tone in reports targeting non-compliant SOEs. Local analysts who depend heavily on political information will also issue more biased and optimistic forecasts on SOEs with violations. Finally, as a reward for achieving government goals, the local brokerages affiliated with these analysts and providing these optimistic forecasts are more likely to become underwriters in seasoned equity offerings of SOEs. This paper reveals that government intervention significantly influences analyst forecasts, providing implications for understanding the sources of analyst forecast bias.
  • 详情 Large Language Models and Return Prediction in China
    We examine whether large language models (LLMs) can extract contextualized representation of Chinese news articles and predict stock returns. The LLMs we examine include BERT, RoBERTa, FinBERT, Baichuan, ChatGLM and their ensemble model. We find that tones and return forecasts extracted by LLMs from news significantly predict future returns. The equal- and value-weighted long minus short portfolios yield annualized returns of 90% and 69% on average for the ensemble model. Given that these news articles are public information, the predictive power lasts about two days. More interestingly, the signals extracted by LLMs contain information about firm fundamentals, and can predict the aggressiveness of future trades. The predictive power is noticeably stronger for firms with less efficient information environment, such as firms with lower market cap, shorting volume, institutional and state ownership. These results suggest that LLMs are helpful in capturing under-processed information in public news, for firms with less efficient information environment, and thus contribute to overall market efficiency.
  • 详情 Extrapolative expectations and asset returns: Evidence from Chinese mutual funds
    We examine how mutual funds form stock market expectations and the implications of these beliefs for asset returns, using a novel text-based measure extracted from Chinese fund reports. Funds extrapolate from recent stock market and fund returns when forming expectations, with more recent returns receiving greater weight. This recency tendency is weaker among more experienced managers. At the aggregate level, consensus expectations positively predict short-term future market returns, both in and out of sample. At the fund level, expectations are positively related to subsequent fund performance in the time series. In the cross-section, however, superior performance arises only when funds accurately forecast market direction and adjust their portfolios accordingly. This effect is stronger for optimistic forecasts and among funds with greater exposure to liquid stocks. Our findings highlight the conditional nature of belief-driven performance, shaped jointly by forecasting skill and the ability to implement views in the presence of execution frictions such as short-selling and liquidity constraints.
  • 详情 Does Futures Market Information Improve Macroeconomic Forecasting: Evidence from China
    This paper investigates the contribution of futures market information to enhancing the predictive accuracy of macroeconomic forecasts, using data from China. We employ three cat-egories of predictors: monthly macroeconomic factors, daily commodity futures factors, and daily financial futures variables. Principal component analysis is applied to extract key fac-tors from large data sets of monthly macroeconomic indicators and daily commodity futures contracts. To address the challenge of mixed sampling frequencies, these predictors are incor-porated into factor-MIDAS models for both nowcasting and long-term forecasting of critical macroeconomic variables. The empirical results indicate that financial futures data provide modest improvements in forecasting secondary and tertiary GDP, whereas commodity futures factors significantly improve the accuracy of PPI forecasts. Interestingly, for PMI forecast-ing, models relying exclusively on futures market data, without incorporating macroeconomic factors, achieve superior predictive performance. Our findings underscore the significance of futures market information as a valuable input to macroeconomic forecasting.
  • 详情 FinTech Platforms and Asymmetric Network Effects: Theory and Evidence from Marketplace Lending
    We conceptually identify and empirically verify the features distinguishing FinTech platforms from non-financial platforms using marketplace lending data. Specifically, we highlight three key features: (i) Long-term contracts introducing default risk at both the individual and platform levels; (ii) Lenders’ investment diversification to mitigate individual default risk; (iii) Platform-level default risk leading to greater asymmetric user stickiness and rendering platform-level cross-side network effects (p-CNEs), a novel metric we introduce, crucial for adoption and market dynamics. We incorporate these features into a model of two-sided FinTech platform with potential failures and endogenous participation and fee structures. Our model predicts lenders’ single-homing, occasional lower fees for borrowers, asymmetric p-CNEs, and the predictive power of lenders’ p-CNEs in forecasting platform failures. Empirical evidence from China’s marketplace lending industry, characterized by frequent market entries, exits, and strong network externalities, corroborates our theoretical predictions. We find that lenders’ p-CNEs are systematically lower on declining or well-established platforms compared to those on emerging or rapidly growing platforms. Furthermore, lenders’ p-CNEs serve as an early indicator of platform survival likelihood, even at the initial stages of market development. Our findings provide novel economic insights into the functioning of multi-sided FinTech platforms, offering valuable implications for both industry practitioners and financial regulators.
  • 详情 Information Source Diversity and Analyst Forecast Bias
    This study investigates the impact of analysts' information source diversity on forecast bias and investment returns. We combine the GPT-4o model and text similarity, to extract the names of information sources from the text of analyst in-depth reports. Using 349,200 sources, we calculate information diversity scores based on the variety of data sources to measure analysts’ ability of selecting relevant information. The findings reveal that higher information diversity significantly reduces forecast bias and enhances portfolio returns. The effect is particularly pronounced for large companies, state-owned enterprises, those with low analyst coverage, low firm-specific experience, and reports with positive forecast revisions. Institutional investors recognize the value of this skill, while retail investors remain largely unaware, which contributes to financial inequality. This study highlights the critical role of information diversity in analyst performance.
  • 详情 Uncertainty and Market Efficiency: An Information Choice Perspective
    We develop an information choice model where information costs are sticky and co-move with firm-level intrinsic uncertainty as opposed to temporal variations in uncertainty. Incorporating analysts' forecasts, we predict a negative relationship between information costs and information acquisition, as proxied by the predictability of analysts' forecast biases. Finally, the model shows a contrasting pattern between information acquisition and intrinsic and temporal uncertainty, where intrinsic uncertainty strengthens return predictability of analysts' biases through the information cost channel, while temporal uncertainty weakens it through the information benefit channel. We empirically confirm these opposing relationships that existing theories struggle to explain.
  • 详情 Attention-based fuzzy neural networks designed for early warning of financial crises of listed companies
    Developing an early warning model for company financial crises holds critical significance in robust risk management and ensuring the enduring stability of the capital market. Although the existing research has achieved rich results, the disadvantages of insufficient text information mining and poor model performance still exist. To alleviate the problem of insufficient text information mining, we collect related financial and annual report data from 820 listed companies in mainland China from 2018 to 2023 by using sophisticated web crawlers and advanced text sentiment analysis technologies and using missing value interpolation, standardization, and data balancing to build multi-source datasets of companies. Ranking the feature importance of multi-source data promotes understanding the formation of financial crises for companies. In the meantime, a novel Attention-based Fuzzy Neural Network (AFNN) was proposed to parse multi-source data to forecast financial crises among listed companies. Experimental results indicate that AFNN exhibits significantly improved performance compared to other advanced methods.
  • 详情 Political contributions and analyst behavior
    We show that the personal traits of analysts, as revealed by their political donations, influence their forecasting behavior and stock prices. Analysts who contribute primarily to the Republican Party adopt a more conservative fore- casting style. Their earnings forecast revisions are less likely to deviate from the forecasts of other analysts and are less likely to be bold. Their stock recommen- dations also contain more modest upgrades and downgrades. Overall, these analysts produce better quality research, which is recognized and rewarded by their employers, institutional investors, and the media. Stock market participants, how- ever, do not fully recognize their superior ability as the market reaction following revisions by these analysts is weaker.