Image Recognition

  • 详情 Image-based Asset Pricing in Commodity Futures Markets
    We introduce a deep visualization (DV) framework that turns conventional commodity data into images and extracts predictive signals via convolutional feature learning. Specifically, we encode futures price trajectories and the futures surface as images, then derive four deep‑visualization (DV) predictors, carry ($bs_{DV}$), basis momentum ($bm_{DV}$), momentum ($mom_{DV}$), and skewness ($sk_{DV}$), each of which consistently outperforms its traditional formula‑based counterpart in return predictability. By forming long–short portfolios in the top (bottom) quartile of each DV predictor, we build an image‑based four‑factor model that delivers significant alpha and better explains the cross‑section of commodity returns than existing benchmarks. Further evidence shows that the explanatory power of these image‑based factors is strongly linked to macroeconomic uncertainty and geopolitical risk. Our findings reveal that transforming conventional financial data into images and relying solely on image-derived features suffices to construct a sophisticated asset pricing model at least in commodity markets, pioneering the paradigm of image‑based asset pricing.
  • 详情 Timing the Factor Zoo via Deep Visualization
    This study reconsiders the timing of the equity risk factors by using the flexible neural networks specified for image recognition to determine the timing weights. The performance of each factor is visualized to be standardized price and volatility charts and `learned' by flexible image recognition methods with timing weights as outputs. The performance of all groups of factors can be significantly improved by using these ``deep learning--based'' timing weights. In addition, visualizing the volatility of factors and using deep learning methods to predict volatility can significantly improve the performance of the volatility-managed portfolio for most categories of factors. Our further investigation reveals that the timing success of our method hinges on its ability in identifying ex ante regime switches such as jumps and crashes of the factors and its predictability on future macroeconomic risk.