RISK

  • 详情 Sdg Performance and Stock Returns: Fresh Insights from China
    Utilizing microevaluation data on the extent to which firms advance the achievement of the UN’s Sustainable Development Goals (SDGs) provided by Robeco, this paper examines the influence of corporate sustainability on stock price performance and its underlying economic mechanisms. The empirical results suggest that firms’ sustainability has a significant negative effect on excess returns, particularly the contribution of firms to the social dimension of sustainability. Firms’ SDG performance can alleviate financing constraints and reduce financial risk, but it does not significantly enhance financial performance, leading to market capital outflows from high SDG-performing firms, especially from individual investors. Furthermore, our results suggest that high SDG-performing firms are undervalued and do not increase the information content in their stock prices, which may be the main reason for the negative effect of SDG performance. We also conduct a series of heterogeneity tests, which show that firms from regions with high environmental regulatory intensity and less economic development, as well as heavily polluting firms and firms with poorer information environments, experience greater negative effects. These findings have implications for investors to properly understand corporate sustainability and for regulators to promote the development of a low-carbon economy.
  • 详情 Carbon Regulatory Risk Exposure in the Bond Market: A Quasi-Natural Experiment in China
    This study aims to examine the causal effect of carbon regulatory risk on corporate bond yield spreads in emerging markets through empirical analysis. Exploiting China's commitment to peak CO2 emissions before 2030 and achieve carbon neutrality before 2060 as an exogenous shock to an unexpected increase in carbon regulatory risk, we perform a difference-in-difference-in-differences (DDD) strategy. We find that exposure to carbon regulatory risk leads to an increase in bond yield spreads for carbon-intensive firms located in regions with stricter regulatory enforcement. This positive relationship is more pronounced for firms with financing constraints, belonging to more competitive industries, and located in regions with a high marketization process. We further identify that higher earnings uncertainty and increased investor attention serve as two mechanisms by which carbon regulatory risk influences the yield spreads of corporate bonds. Moreover, the spread decomposition reveals that the rise in bond yield spreads after an increase in carbon regulatory risk is primarily driven by the rise in default risk rather than the rise in liquidity risk. Overall, our findings highlight the importance of considering carbon regulatory risk exposure in financial markets, especially in developing economies like China.
  • 详情 Capacity Allocation of Pumped Hydro Storage Under Marketization Process: A Transitional Strategy
    To address the challenges posed by renewable energy integration in power systems, China is advancing the development of Pumped Hydro Storage (PHS). However, the rapid growth of PHS installations, coupled with strict regulations and a high reliance on capacity compensation, has led to increasing financial burdens on other utilities. One solution is to reallocate the capacity compensation through market-based approaches to implement the “beneficiary-pays” principle. To achieve this goal, an operational policy named ’partial-regulated dispatch’ is proposed in this study. The analysis of this policy encompasses two crucial dimensions: the dispatch mechanism and business models. The dispatch mechanism evaluates PHS’s capacity contribution to grid stability, while the business models focus on enhancing PHS profitability to reduce dependency on capacity compensation while ensuring long-term economic sustainability. Furthermore, the flexibility of PHS is introduced as a criterion for assessing system security contributions, considering both individual unit vibration characteristics and multi-unit commitment strategies. The case study shows that through partial-regulated dispatch, PHS can reduce its reliance on capacity compensation by nearly 50% while ensuring its regulation service via flexibility compensation. This policy effectively balances economic viability with system support capabilities. Moreover, flexibility compensation provides PHS operators with a risk mitigation strategy in the complex power market environment. Under an appropriate operational strategy and policy incentives, the flexibility can be enhanced by nearly 30% in a fully marketized scenario, contributing to both system stability and operational efficiency.
  • 详情 Social Distrust and Household Savings: Evidence from China
    This paper examines the impact of social distrust on household saving in China using a microsample from the China Family Panel Studies (CFPS). We find that social distrust leads to an increase in savings within households, in which households not living alone, with higher levels of education and urban households are more affected. We also find that social distrust affects household savings through raising risk expectations, reducing credit availability and amplifying risk spillovers from real estate markets.
  • 详情 The Impact of Chinese Local Government Hidden Debt on Corporate ESG Greenwashing
    This paper examines the impact of Chinese local government hidden debt on corporate ESG greenwashing. Extending fraud theory, we reveal that hidden debt shifts the boundary between government and market that drives the factors behind ESG greenwashing. Using the ESG greenwashing indicator of listed firms in the A-share market and the hidden debt-to-GDP ratio of 31 provinces from 2012 to 2023, we find that local government hidden debt is positively correlated with corporate ESG greenwashing. The impact is more significant for firms that are state-owned, without active primary-level Party organizations, or not on China’s key pollution supervisory list. Mechanism analysis indicates that expansion of local government hidden debt brings firms with higher LGFVs’ share-holding for the SOEs, heavier environmental tax burden, and less social responsibility preference, all of which are related with ESG greenwashing. Reducing local government special debt and improving tax compliance can help alleviate this impact. These findings highlight the necessity of fiscal risk management in achieving genuinely sustainable corporate development.
  • 详情 Adverse Selection of China's Automobile Insurance Market on the Iot
    Adverse selection remains a significant challenge in the insurance industry, often resulting in substantial financial losses for insurers. The primary hurdle in addressing the issue lies in accurately identifying and quantifying adverse selection. Traditional methods often fail to adequately account for the heterogeneity of insurance purchasers and the endogenous nature of their insurance decisions. This study introduces an innovative approach that integrates the Gaussian Mixture Model and the regression-based model from Dionne et al. (2001) to assess adverse selection, addressing the limitations of previous methods. Through comprehensive simulations, we demonstrate that our method yields unbiased estimates, outperforming existing approaches. Applied to China’s automobile insurance market, leveraging IoT devices to track telematics data, this method captures risk heterogeneity among the insured. The results offer robust evidence of adverse selection, in contrast to conventional methods that fail to detect this phenomenon due to their inability to capture the underlying relationship between customer risk and claim behavior. Our approach offers insurers a robust framework for identifying information asymmetries in the market, thereby enabling the development of more targeted policy interventions and risk management strategies.
  • 详情 A New Paradigm for Gold Price Forecasting: ASSA-Improved NSTformer in a WTC-LSTM Framework Integrating Multiple Uncertainty
    This paper proposed an innovative WTC-LSTM-ASSA-NSTformer framework for gold price forecasting. The model integrates Wavelet Transform Convolution, Long Short-Term Memory networks (LSTM), and an improved Nyström Spatial-Temporal Transformer (NSTformer) based on Adaptive Sparse Self-Attention (ASSA), effectively capturing the multi-scale features and long- and short-term dependencies of gold prices. Additionally, for the first time, various financial and economic uncertainty indices (including VIX, GPR, EPU, and T10Y3M) are innovatively incorporated into the forecasting model, enhancing its adaptability to complex market environments. An empirical analysis based on a large-scale daily dataset from 1990 to 2024 shows that the model significantly outperforms traditional methods and standalone deep learning models in terms of MSE and MAE metrics. The model’s superiority and stability are further validated through multiple robustness tests, including varying sliding window sizes, adjusting dataset proportions, and experiments with different forecasting horizons. This study not only provides a highly accurate tool for gold price forecasting but also offers a novel methodological pattern to financial time series analysis, with important practical implications for investment decision-making, risk management, and policy formulation.
  • 详情 Memory-induced Trading: Evidence from COVID-19 Quarantines
    This study investigates the role of contextual cues in memory-based decision-making within high-stakes trading environments. Using trade records from a large Chinese brokerage firm and a novel dataset on COVID-19 quarantines, we find that quarantine periods trigger the recall of previously traded stocks, increasing the likelihood of subsequent orders for those stocks. The observed patterns align more closely with similarity-based recall than with alternative channels. Welfare analysis reveals that these memory-induced trades lead to an annualized loss of approximately 70 percentage points for the representative investor's portfolio. We also find evidence at the market level: when the geographical distribution of quarantine risks is recalled, the probability of recalling the cross-sectional stock return-volume distribution from the same day increases by 1.6 percentage points. This study provides causal evidence from a real-world setting for memory-based theories, particularly similarity-based recall, and highlights a novel channel through which COVID-19 policies affect financial markets.
  • 详情 Tail risk contagion across Belt and Road Initiative stock networks: Result from conditional higher co-moments approach
    We study tail-risk contagion in Belt and Road (BRI) stock markets by conditioning on shocks from China and global commodities. We construct time-varying contagion indices from conditional higher co-moments (CoHCM) estimated within a DCC-GARCH model with generalized hyperbolic innovations, and apply them to daily data for 32 BRI markets. The higher-moment index isolates two channels: a China-driven financial-institutional channel and a WTI-driven commodity-real-economy channel, whereas a covariance benchmark fails to recover this separation. Furthermore, the system-GMM estimates link the China-conditional channel to institutional quality and financial depth, and the WTI-conditional channel to real activity. In out-of-sample portfolio tests, the WTI-conditional signal improves risk-adjusted performance relative to equally weighted and mean-variance benchmarks, while the China-conditional signal does not. Tail-based measurement thus sharpens identification of contagion paths and yields information that is economically relevant for risk management in interconnected emerging markets.