learning

  • 详情 Spillover Effects of Auditing Cross-Listed Clients on Domestic Audit Quality: Organizational Learning and Organizational Disruption
    We examine how organizational learning and organizational disruption jointly arise when Chinese audit firms have U.S. cross-listed clients and which effect dominates. Among public companies listed only in China, we define the treatment group as companies audited by Chinese audit firms serving at least one U.S. client, similar companies audited by firms without U.S. clients as the control group. Survey evidence indicates strong incentives and opportunities to learn from U.S. engagements and frequent learning activities in treatment audit firms. The archival evidence however shows that their domestic audit quality declines relative to the control group. The effect is more pronounced when U.S. clients demand more audit resources, when domestic clients are more sensitive to limited audit attention, and when U.S. and domestic clients are more similar. Overall, our findings indicate a negative externality of U.S. cross-listing audit when resource constraints hinder an effective firm-wide learning.
  • 详情 A New Paradigm for Gold Price Forecasting: ASSA-Improved NSTformer in a WTC-LSTM Framework Integrating Multiple Uncertainty
    This paper proposed an innovative WTC-LSTM-ASSA-NSTformer framework for gold price forecasting. The model integrates Wavelet Transform Convolution, Long Short-Term Memory networks (LSTM), and an improved Nyström Spatial-Temporal Transformer (NSTformer) based on Adaptive Sparse Self-Attention (ASSA), effectively capturing the multi-scale features and long- and short-term dependencies of gold prices. Additionally, for the first time, various financial and economic uncertainty indices (including VIX, GPR, EPU, and T10Y3M) are innovatively incorporated into the forecasting model, enhancing its adaptability to complex market environments. An empirical analysis based on a large-scale daily dataset from 1990 to 2024 shows that the model significantly outperforms traditional methods and standalone deep learning models in terms of MSE and MAE metrics. The model’s superiority and stability are further validated through multiple robustness tests, including varying sliding window sizes, adjusting dataset proportions, and experiments with different forecasting horizons. This study not only provides a highly accurate tool for gold price forecasting but also offers a novel methodological pattern to financial time series analysis, with important practical implications for investment decision-making, risk management, and policy formulation.
  • 详情 Peer effect in green bond issuances
    We investigate whether a firm’s decision on green bond issuances is influenced by the green bond issuances by other firms in the same industry. We find that a firm is significantly more likely to issue green bonds after observing that other firms in the same industry have previously issued green bonds. This effect cannot be explained by the issuer’s supplement to their previous issuances, incentive policies, and industry competition. Furthermore, we show that issuing green bonds can bring significant positive stock excess returns, which increases the motivation for institutional investors to learn and drive other firms in the same industry they hold to issue green bonds. Our findings indicate that the peer effect can be driven by social learning of the common ownership among firms and explain the reason for the rapid increase in green bond issuance.
  • 详情 Bounded Rational Bidding Strategy of Genco in Electricity Spot Market Based on Prospect Theory and Distributional Reinforcement Learning
    With the increasing penetration of renewable energy (RE) in power systems, the electricity spot market has become increasingly uncertain, presenting significant challenges for generation companies (GenCos) in formulating effective bidding strategies. Most existing studies assume that GenCos act as perfectly rational decision makers, overlooking the impact of irrational bidding behaviors in uncertain market environments. To address this limitation, we incorporate prospect theory to model the decision-making process of bounded rational GenCos operating under risk. A bilevel stochastic model is developed to simulate strategic bidding in the spot market. In addition, a distributional re-inforcement learning algorithm is proposed to tackle the decision-making challenges faced by bounded rational GenCos with risk considerations. The proposed model and algorithm are validated through simulations using a 27-bus system from a region in eastern China. The results demonstrate that the algorithm effectively captures market uncertainties and learns the distribution of GenCo’s profits. Furthermore, simulated bidding strategies for various types of GenCos highlight the applicability of prospect theory to describe bounded rational decision-making behavior in electricity markets.
  • 详情 Positive Press, Greener Progress: The Role of ESG Media Reputation in Corporate Energy Innovation
    The growing emphasis on Environmental, Social, and Governance (ESG) principles, particularly in corporate sectors, shapes investment trends and operational strategies, whose shift is supported by the increasing role of media in monitoring and influencing corporate ESG performance, thereby driving the energy innovation. Therefore, based on reported events from Baidu News and patent text information of Chinese A-share listed companies from 2012 to 2022, this study innovatively applied machine learning and text analysis to measure ESG news sentiment and corporate energy innovation indicators. Combing with reputation, stakeholder, and agency theories, we find that a good reputation conveyed by positive ESG textual sentiments in the media significantly promotes corporate energy innovation, and the effect is mainly realized through alleviating financing constraints and agency problems and promoting green investment. Further analysis shows that ESG news sentiment promotes corporate energy innovation mainly among private firms, non-growth-stage firms, high-energy-consuming firms, and regions with better green finance development and higher ESG governance intensity. From the perspective of ESG news content and information content, greater ESG news attention can also exert an energy innovation incentive effect, in which the incentive effect exerted by positive media sentiment in the environmental (E) and social (S) dimensions, as well as excellent attention, is more robust. This study provides new insights for promoting green and low-carbon development and understanding the external governance role of media in corporate ESG development.
  • 详情 Tracing the Green Footprint: The Evolution of Corporate Environmental Disclosure Through Deep Learning Models
    Environmental disclosure in emerging markets remains poorly understood, despite its critical role in sustainability governance. Here, we analyze 42,129 firm-year environmental disclosures from 4,571 Chinese listed firms (2008-2022) using machine learning techniques to characterize disclosure patterns and regulatory responses. We show that increased disclosure volume primarily comprises boilerplate content rather than material information. Cross-sectional analyses reveal systematic variations across industries, with manufacturing and high-pollution sectors exhibiting more comprehensive disclosures than consumer and technology sectors. Notably, regional rankings in environmental disclosure volume do not align with local economic development levels. Through examination of staggered regulatory implementation, we demonstrate that market-based mechanisms generate more substantive disclosures compared to command-and-control approaches. These results provide empirical evidence that firms strategically manage environmental disclosures in response to institutional pressures. Our findings have important implications for regulatory design in emerging markets and advance understanding of voluntary disclosure mechanisms in sustainability governance.
  • 详情 A Cobc-Arma-Svr-Bilstm-Attention Green Bond Index Prediction Method Based on Professional Network Language Sentiment Dictionary
    Green bonds, pivotal to green finance, draw growing attention from scholars and investors. Social media’s proliferation has amplified the influence of investor sentiment, necessitating robust analysis of its market impact. However, general sentiment lexicons often fail to capture domain-specific slang and nuanced expressions unique to China’s bond market, leading to inaccuracies in sentiment analysis. Thus, this study constructs a specialized sentiment lexicon for the green bond market, namely the COBC (Chinese online bond comments sentiment lexicon), to dissect bond market slang and investor remarks. Compared to three general lexicons (Textbook, SnowNLP, and VADER), it improves the average prediction accuracy by approximately 87.2% in sentiment analysis of Chinese online language within the green bond domain. Sentiment scores derived from COBC-based dictionary analysis are systematically integrated as predictive features into a two-stage hybrid predictive model is proposed integrating Support Vector Machine (SVM), Auto-Regressive Moving Average (ARMA), Bidirectional Long Short-Term Memory Networks (BiLSTM), and Attention Mechanisms to forecast China's green bond market, represented by the China Bond 45 Green Bond Index. First, ARMA-SVR is employed to extract residuals and statistical features from the green bond index. Then, the BiLSTM-Attention model is applied to assess the impact of investor sentiment on the index. Empirical results show that incorporating investor sentiment significantly enhances the predictive accuracy of the green bond index, achieving an average of 67.5% reduction in Mean Squared Error (MSE), and providing valuable insights for market participants and policymakers.
  • 详情 Artificial Intelligence, Stakeholders and Maturity Mismatch: Exploring the Differential Impacts of Climate Risk
    The corporate maturity mismatch is highly likely to trigger systemic financial risks, which is a realistic issue commonly faced by businesses. In the context of the intelligent era, the impact of artificial intelligence on maturity mismatch has emerged as a focal point of academic inquiry. Leveraging data from Chinese A-share companies over the 2011–2023 timeframe, this research employs a double machine learning approach to systematically examine the influence and underlying mechanisms of artificial intelligence on maturity mismatch. The findings reveal that artificial intelligence significantly exacerbates maturity mismatch. However, this effect is notably mitigated by government subsidies, media attention, and collectivist cultural. Further analysis indicates that in high-climate-risk scenarios, collectivist culture exerts a notably strong moderating influence. By contrast, government subsidies and media attention exhibit stronger moderating influences in low-climate-risk environments. This study constructs a multi-stakeholder collaborative governance framework, which helps to reveal the 'black box' between artificial intelligence and maturity mismatch, thereby offering a theoretical basis for monitoring maturity mismatch.
  • 详情 How Do Acquirers Bid? Evidence from Serial Acquisitions in China
    This study explores the anchoring effect of previous bid premiums on acquirers’ bidding behavior in serial acquisitions. We demonstrate that, after controlling for deal characteristics, learning, and unobserved factors, the current bid premium is positively correlated with the acquirer’s previous bid premium. The strength of this anchoring effect diminishes with longer time intervals between acquisitions and increases with the industry similarity of targets. Notably, it remains unaffected by the acquirer’s state ownership or acquisition frequency. Additionally, the anchoring effect is less pronounced during periods of high economic uncertainty and can reverse following a change in the acquirer’s CEO. Our findings suggest that serial acquisitions are interrelated events, challenging the notion that each bid is an isolated occurrence. This research provides insights into the underperformance of serial acquirers compared to single acquirers and the declining trend in announcement returns across successive deals.
  • 详情 Research on SVM Financial Risk Early Warning Model for Imbalanced Data
    Background Economic stability depends on the ability to foresee financial risk, particularly in markets that are extremely volatile. Unbalanced financial data is difficult for traditional Support Vector Machine (SVM) models to handle, which results in subpar crisis detection capabilities. In order to improve financial risk early warning models, this study combines Gaussian SVM with stochastic gradient descent (SGD) optimisation (SGD-GSVM). Methods The suggested model was developed and assessed using a dataset from China's financial market that included more than 2,000 trading days (January 2022–February 2024). Missing value management, Min-Max scaling for normalising numerical characteristics, and ADASYN oversampling for class imbalance were all part of the data pretreatment process. Key evaluation metrics, such as accuracy, recall, F1-score, G-Mean, AUC-PR, and training time, were used to train and evaluate the SGD-GSVM model to Standard GSVM, SMOTE-SVM, CS-SVM, and Random Forest. Results Standard GSVM (76% accuracy, 1,200s training time) and CS-SVM (81% accuracy, 1,300s training time) were greatly outperformed by the suggested SGD-GSVM model, which obtained the greatest accuracy of 92% with a training time of just 180 seconds. Additionally, it showed excellent recall (90%) and precision (82%), making it the most effective and efficient model for predicting financial risk. Conclusion This work offers a new method for early warning of financial risk by combining SGD optimisation with Gaussian SVM and employing adaptive oversampling for data balancing. The findings show that SGD-GSVM is the best model because it strikes a balance between high accuracy and computational economy. Financial organisations can create real-time risk management plans with the help of the suggested technique. For additional performance improvements, hybrid deep learning approaches might be investigated in future studies.