performance

  • 详情 Spatiotemporal Correlation in Stock Liquidity Through Corporate Networks from Information Disclosure Texts
    The healthy operation of the stock market relies on sound liquidity. We utilize the semantic information from disclosure texts of listed companies on the China Science and Technology Innovation Board (STAR Market) to construct a daily corporate network. Through empirical tests and performance analyses of machine learning models, we elucidate the relationship between the similarity of company disclosure text contents and the temporal and spatial correlations of stock liquidity. Our liquidity indicators encompass trading costs, market depth, trading speed, and price impact, recognized across four dimensions. Furthermore, we reveal that the information loss caused by employing Minimum Spanning Tree (MST) topology significantly affects the explanatory power of network topology indicators for stock liquidity, with a more pronounced impact observed at the document level. Subsequently, by establishing a neural network model to predict next-day liquidity indicators, we demonstrate the temporal relationship of stock liquidity. We model a liquidity predicting task and train a daily liquidity prediction model incorporating Graph Convolutional Network (GCN) modules to solve it. Compared to models with the same parameter structure containing only fully connected layers, the GCN prediction model, which leverages company network structure information, exhibits stronger performance and faster convergence. We provide new insights for research on company disclosure and capital market liquidity.
  • 详情 ESG Rating Results and Corporate Total Factor Productivity
    ESG is emerging as a new benchmark for measuring a company's sustainable development capabilities and social impact. As a measure of ESG performance, ESG ratings are increasingly receiving attention from companies, the general public, and government institutions, and are becoming an important reference factor influencing their decision-making. This paper investigates the impact of corporate ESG ratings on Total Factor Productivity (TFP) and its mechanisms of action. Focusing on listed companies in China, we find that higher ESG ratings contribute to improving a company's TFP, and this conclusion remains valid after robustness tests and addressing endogeneity issues. Further exploration into the reasons behind this result reveals that ESG ratings can be seen as a signal that a company sends to the outside world, representing its overall performance. Higher ESG ratings enhance a company's TFP by reducing market financing constraints and obtaining government subsidies. Heterogeneity analysis shows that the positive impact of ESG ratings on TFP is more pronounced for companies with higher levels of attention, reputation, and audit quality. Additionally, we explore whether ESG ratings can serve as a predictive indicator for measuring a company's TFP. This hypothesis was tested using machine learning algorithms, and the results indicate that models incorporating ESG rating indicators significantly improve the accuracy of predicting a company's TFP capabilities.
  • 详情 The effect of third-party certification for green bonds: Evidence from China
    We investigate the effect of third-party certification for green bonds by analyzing its impact on issuer's future green innovation performances. We find that third-party certification for green bonds can significantly promote issuer's future green innovation performances. Furthermore, the promotion effect is more prominent in non-state-owned issuers, large issuers and heavy polluting issuers, and can be more significantly exerted by professional and reputable third-party certification agencies. Besides, third-party certification for green bonds can play the effect by reducing the issuer's tax expenditure, increasing the issuer's loan financing, and receiving a positive response in stock returns. But unexpectedly, it cannot play the effect by further reducing the credit spread of green bonds. Our findings indicate that independent external supervision can play a positive role in green bond issuance, but there is still a long way to go.
  • 详情 The Optimality of Gradualism in Economies with Financial Markets
    We develop a model economy with active financial markets in which a policymaker's adoption of a gradualistic approach constitutes a Bayesian Nash equilibrium. In our model, the ex ante policy proposal influences the supply side of the economy, while the ex post policy action affects the demand side and shapes market equilibrium. When choosing policies, the policymaker internalizes the impact of her decisions on the precision of the firm-value signal. Moreover, financial markets provide a price signal that informs the government. The policymaker learns about the productivity shocks not only from firm-value performance signals but also from financial market prices. Access to information through both channels creates strong incentives for the policymaker to adopt a gradualistic approach in a time-consistent manner. Smaller policy steps yield more precise information about the productivity shock. These results hold robustly for both exogenous and endogenous information models.
  • 详情 Climate Risk and Corporate Financial Risk: Empirical Evidence from China
    There is substantial evidence indicating that enterprises are negatively impacted by climate risk, with the most direct effects typically occurring in financial domains. This study examines A-share listed companies from 2007 to 2023, employing text analysis to develop the firm-level climate risk indicator and investigate the influence on corporate financial risk. The results show a significant positive correlation between climate risk and financial risk at the firm level. Mechanism analysis shows that the negative impact of climate risk on corporate financial condition is mainly achieved through three paths: increasing financial constraints, reducing inventory reserves, and increasing the degree of maturity mismatch. To address potential endogeneity, this study applies instrumental variable tests, propensity score matching, and a quasi-natural experiment based on the Paris Agreement. Additional tests indicate that reducing the degree of information asymmetry and improving corporate ESG performance can alleviate the negative impact of climate risk on corporate financial conditions. This relationship is more pronounced in high-carbon emission industries. In conclusion, this research deepens the understanding of the link between climate risk and corporate financial risk, providing a new micro perspective for risk management, proactive governance transformation, and the mitigation of financial challenges faced by enterprises.
  • 详情 Extrapolative expectations and asset returns: Evidence from Chinese mutual funds
    We examine how mutual funds form stock market expectations and the implications of these beliefs for asset returns, using a novel text-based measure extracted from Chinese fund reports. Funds extrapolate from recent stock market and fund returns when forming expectations, with more recent returns receiving greater weight. This recency tendency is weaker among more experienced managers. At the aggregate level, consensus expectations positively predict short-term future market returns, both in and out of sample. At the fund level, expectations are positively related to subsequent fund performance in the time series. In the cross-section, however, superior performance arises only when funds accurately forecast market direction and adjust their portfolios accordingly. This effect is stronger for optimistic forecasts and among funds with greater exposure to liquid stocks. Our findings highlight the conditional nature of belief-driven performance, shaped jointly by forecasting skill and the ability to implement views in the presence of execution frictions such as short-selling and liquidity constraints.
  • 详情 How Financial Influencers Rise Performance Following Relationship and Social Transmission Bias
    Using unique account-level data from a leading Chinese fintech platform, we investigate how financial influencers, the key information intermediaries in social finance, attract followers through a process of social transmission bias. We document a robust performance-following pattern wherein retail investors overextrapolate influencers’ past returns rather than rational learning in the social network from their past performance. The transmission bias is amplified by two mechanisms: (1) influencers’ active social engagement and (2) their index fund-heavy portfolios. Evidence further reveals influencers’self-enhancing reporting through selective performance disclosure. Crucially, the dynamics ultimately increase risk exposure and impair returns for follower investors.
  • 详情 Attentive Market Timing
    This paper provides evidence that some seasoned equity offerings are motivated by public information. We test this channel in the supply chain setting, where supplier managers are more attentive than outside investors to customer news. We find that supplier firms are more likely to issue seasoned equity when their customer firms have negative earnings surprises. The results are mitigated when there is common scrutiny on the customer-supplier firm pairs by outside investors and analysts. Furthermore, long-run stock market performance appears to be worse for firms that issue seasoned equity following the negative earnings surprise of their customer firms.
  • 详情 Redefining China’s Real Estate Market: Land Sale, Local Government, and Policy Transformation
    This study examines the economic consequences of China’s Three-Red-Lines policy—introduced in 2021 to cap real estate developers’ leverage by imposing strict thresholds on debt ratios and liquidity. Developers breaching these thresholds experienced sharp declines in financing, land acquisitions, and financial performance, with privately-owned developers disproportionately affected relative to state-owned firms. Using granular project-level data, we document significant drops in sales and a demand shift from private to state-owned developers. The policy also reduced local governments’ land sale revenues, prompting greater reliance on hidden local government financing vehicles for land purchases. The policy induced broad structural changes in China’s housing and land markets.
  • 详情 AI Adoption and Mutual Fund Performance
    We investigate the economic impact of artificial intelligence (AI) adoption in the mutual fund industry by introducing a novel measure of AI adoption based on the presence of AI skilled personnel at fund management firms. We provide robust evidence that AI adoption enhances fund performance, primarily by improving risk management, increasing attentive capacity, and enabling faster information processing. Furthermore, we find that mutual funds with higher levels of AI adoption experience greater investor net flows and exhibit lower flow-performance sensitivity. While AI adoption benefits individual funds, we find no evidence of aggregate performance improvements at the industry level.