Attention

  • 详情 Technological Momentum in China: Large Language Model Meets Simple Classifications
    This study applies large language models (LLMs) to measure technological links and examines its predictive power in the Chinese stock market. Using the BAAI General Embedding (BGE) model, we extract semantic information from patent textual data to construct the technological momentum measure. As a comparison, the measure based on traditional International Patent Classification (IPC) is also considered. Empirical analysis shows that both measures significantly predict stock returns and they capture complementary dimensions of technological links. Further investigation through stratified analysis reveals the critical role of investor inattention in explaining their differential performance: in stocks with low investor inattention, IPC-based measure loses its predictive power while BGE-based measure remains significant, indicating that straightforward information is fully priced in while complex semantic relationships require greater cognitive processing; in stocks with high investor inattention, both measures exhibit predictability, with BGE-based measure showing stronger effects. These findings support behavioral finance theories suggesting that complex information diffuses more slowly in markets, especially under significant cognitive constraints, and demonstrate LLMs’ advantage in uncovering subtle technological connections that traditional methods overlook.
  • 详情 Carbon Regulatory Risk Exposure in the Bond Market: A Quasi-Natural Experiment in China
    This study aims to examine the causal effect of carbon regulatory risk on corporate bond yield spreads in emerging markets through empirical analysis. Exploiting China's commitment to peak CO2 emissions before 2030 and achieve carbon neutrality before 2060 as an exogenous shock to an unexpected increase in carbon regulatory risk, we perform a difference-in-difference-in-differences (DDD) strategy. We find that exposure to carbon regulatory risk leads to an increase in bond yield spreads for carbon-intensive firms located in regions with stricter regulatory enforcement. This positive relationship is more pronounced for firms with financing constraints, belonging to more competitive industries, and located in regions with a high marketization process. We further identify that higher earnings uncertainty and increased investor attention serve as two mechanisms by which carbon regulatory risk influences the yield spreads of corporate bonds. Moreover, the spread decomposition reveals that the rise in bond yield spreads after an increase in carbon regulatory risk is primarily driven by the rise in default risk rather than the rise in liquidity risk. Overall, our findings highlight the importance of considering carbon regulatory risk exposure in financial markets, especially in developing economies like China.
  • 详情 Social Networks in Motion: High-Speed Rail and Market Reactions to Earnings News
    We examine how social networks shaped by high-speed rail connections influence investor attention and market reactions to earnings announcements in China. Firms in high-centrality cities exhibit stronger immediate and subsequent responses in investor attention, stock price, and trading volume to earnings news. Further analysis shows that earnings-induced local attention predicts future attention spillovers to intercity investors, amplifying both price and volume reactions after announcements. Overall, these findings indicate that high-speed rail networks foster investor social networks that facilitate the dissemination of firm news and help explain predictable patterns in investor behavior and market pricing.
  • 详情 Spillover Effects of Auditing Cross-Listed Clients on Domestic Audit Quality: Organizational Learning and Organizational Disruption
    We examine how organizational learning and organizational disruption jointly arise when Chinese audit firms have U.S. cross-listed clients and which effect dominates. Among public companies listed only in China, we define the treatment group as companies audited by Chinese audit firms serving at least one U.S. client, similar companies audited by firms without U.S. clients as the control group. Survey evidence indicates strong incentives and opportunities to learn from U.S. engagements and frequent learning activities in treatment audit firms. The archival evidence however shows that their domestic audit quality declines relative to the control group. The effect is more pronounced when U.S. clients demand more audit resources, when domestic clients are more sensitive to limited audit attention, and when U.S. and domestic clients are more similar. Overall, our findings indicate a negative externality of U.S. cross-listing audit when resource constraints hinder an effective firm-wide learning.
  • 详情 A New Paradigm for Gold Price Forecasting: ASSA-Improved NSTformer in a WTC-LSTM Framework Integrating Multiple Uncertainty
    This paper proposed an innovative WTC-LSTM-ASSA-NSTformer framework for gold price forecasting. The model integrates Wavelet Transform Convolution, Long Short-Term Memory networks (LSTM), and an improved Nyström Spatial-Temporal Transformer (NSTformer) based on Adaptive Sparse Self-Attention (ASSA), effectively capturing the multi-scale features and long- and short-term dependencies of gold prices. Additionally, for the first time, various financial and economic uncertainty indices (including VIX, GPR, EPU, and T10Y3M) are innovatively incorporated into the forecasting model, enhancing its adaptability to complex market environments. An empirical analysis based on a large-scale daily dataset from 1990 to 2024 shows that the model significantly outperforms traditional methods and standalone deep learning models in terms of MSE and MAE metrics. The model’s superiority and stability are further validated through multiple robustness tests, including varying sliding window sizes, adjusting dataset proportions, and experiments with different forecasting horizons. This study not only provides a highly accurate tool for gold price forecasting but also offers a novel methodological pattern to financial time series analysis, with important practical implications for investment decision-making, risk management, and policy formulation.
  • 详情 Institutional Investors’ ESG Investment Commitments and ESG Rating Disagreement-An Empirical Analysis of Unpri Signatorie Commitment
    The role of institutional investors in the development of Environmental, Social, and Governance (ESG) criteria lacks consensus in the academic community. This study utilizes a quasi-natural experiment involving Chinese mutual funds that have signed the United Nations Principles for Responsible Investment (UNPRI) to investigate whether institutional Investors’ ESG investment commitments can significantly reduce ESG rating disagreement among the companies in their portfolios. We first find that companies held by ESG commitment institutional Investors exhibit less disagreement in ESG rating compared to those held by Non-ESG commitment institutional Investors. we then show that institutional Investor’ ESG investment commitment influence ESG rating disagreement by enhancing the quality of ESG disclosure and attracting external ESG attention. We further discover that institutional investors’ ESG investment commitments significantly mitigates the ESG rating disagreement among domestic ESG rating agencies and firms with a higher level of corporate governance.
  • 详情 Positive Press, Greener Progress: The Role of ESG Media Reputation in Corporate Energy Innovation
    The growing emphasis on Environmental, Social, and Governance (ESG) principles, particularly in corporate sectors, shapes investment trends and operational strategies, whose shift is supported by the increasing role of media in monitoring and influencing corporate ESG performance, thereby driving the energy innovation. Therefore, based on reported events from Baidu News and patent text information of Chinese A-share listed companies from 2012 to 2022, this study innovatively applied machine learning and text analysis to measure ESG news sentiment and corporate energy innovation indicators. Combing with reputation, stakeholder, and agency theories, we find that a good reputation conveyed by positive ESG textual sentiments in the media significantly promotes corporate energy innovation, and the effect is mainly realized through alleviating financing constraints and agency problems and promoting green investment. Further analysis shows that ESG news sentiment promotes corporate energy innovation mainly among private firms, non-growth-stage firms, high-energy-consuming firms, and regions with better green finance development and higher ESG governance intensity. From the perspective of ESG news content and information content, greater ESG news attention can also exert an energy innovation incentive effect, in which the incentive effect exerted by positive media sentiment in the environmental (E) and social (S) dimensions, as well as excellent attention, is more robust. This study provides new insights for promoting green and low-carbon development and understanding the external governance role of media in corporate ESG development.
  • 详情 A Cobc-Arma-Svr-Bilstm-Attention Green Bond Index Prediction Method Based on Professional Network Language Sentiment Dictionary
    Green bonds, pivotal to green finance, draw growing attention from scholars and investors. Social media’s proliferation has amplified the influence of investor sentiment, necessitating robust analysis of its market impact. However, general sentiment lexicons often fail to capture domain-specific slang and nuanced expressions unique to China’s bond market, leading to inaccuracies in sentiment analysis. Thus, this study constructs a specialized sentiment lexicon for the green bond market, namely the COBC (Chinese online bond comments sentiment lexicon), to dissect bond market slang and investor remarks. Compared to three general lexicons (Textbook, SnowNLP, and VADER), it improves the average prediction accuracy by approximately 87.2% in sentiment analysis of Chinese online language within the green bond domain. Sentiment scores derived from COBC-based dictionary analysis are systematically integrated as predictive features into a two-stage hybrid predictive model is proposed integrating Support Vector Machine (SVM), Auto-Regressive Moving Average (ARMA), Bidirectional Long Short-Term Memory Networks (BiLSTM), and Attention Mechanisms to forecast China's green bond market, represented by the China Bond 45 Green Bond Index. First, ARMA-SVR is employed to extract residuals and statistical features from the green bond index. Then, the BiLSTM-Attention model is applied to assess the impact of investor sentiment on the index. Empirical results show that incorporating investor sentiment significantly enhances the predictive accuracy of the green bond index, achieving an average of 67.5% reduction in Mean Squared Error (MSE), and providing valuable insights for market participants and policymakers.
  • 详情 Does Key Audit Matters (Kams) Disclosure Affect Corporate Financialization?
    This paper aims to clarify the relationship between key audit matters (KAMs) disclosure and corporate financialization. The findings reveal that key audit matters (KAMs) disclosure can provide incremental information value, thereby impeding corporate financialization in China. Moreover, this effect is more pronounced in the samples with low media attention, low shareholding of institutional investors, and non-state-owned enterprises. Further research indicates that reducing managerial myopia and easing financing constraints serve as key channels through which key audit matters (KAMs) disclosure affects corporate financialization. This study provides empirical evidence on efficiently preventing excessive financialization of enterprises, as well as some insights for mitigating systemic financial risks from the key audit matters (KAMs) disclosure perspective.
  • 详情 Artificial Intelligence, Stakeholders and Maturity Mismatch: Exploring the Differential Impacts of Climate Risk
    The corporate maturity mismatch is highly likely to trigger systemic financial risks, which is a realistic issue commonly faced by businesses. In the context of the intelligent era, the impact of artificial intelligence on maturity mismatch has emerged as a focal point of academic inquiry. Leveraging data from Chinese A-share companies over the 2011–2023 timeframe, this research employs a double machine learning approach to systematically examine the influence and underlying mechanisms of artificial intelligence on maturity mismatch. The findings reveal that artificial intelligence significantly exacerbates maturity mismatch. However, this effect is notably mitigated by government subsidies, media attention, and collectivist cultural. Further analysis indicates that in high-climate-risk scenarios, collectivist culture exerts a notably strong moderating influence. By contrast, government subsidies and media attention exhibit stronger moderating influences in low-climate-risk environments. This study constructs a multi-stakeholder collaborative governance framework, which helps to reveal the 'black box' between artificial intelligence and maturity mismatch, thereby offering a theoretical basis for monitoring maturity mismatch.