Belief Dispersion

  • 详情 Different Opinion or Information Asymmetry: Machine-Based Measure and Consequences
    We leverage machine learning to introduce belief dispersion measures to distinguish different opinion (DO) and information asymmetry (IA). Our measures align with the human-based measure and relate to economic outcomes in a manner consistent with theoretical prediction: DO positively relates to trading volume and negatively linked to bid-ask spread, whereas IA shows the opposite effects. Moreover, IA negatively predicts the cross-section of stock returns, while DO positively predicts returns for underpriced stocks and negatively for overpriced ones. Our findings reconcile conflicting disagree-return relations in the literature and are consistent with Atmaz and Basak (2018)’s model. We also show that the return predictability of DO and IA stems from their unique economic rationales, underscoring that components of disagreement can influence market equilibrium via distinct mechanisms.
  • 详情 Belief Dispersion in the Chinese Stock Market and Fund Flows
    This study explores how Chinese mutual fund managers’ degrees of disagreement (DOD) on stock market returns affect investor capital allocation decisions using a novel text-based measure of expectations in fund disclosures. In the time series, the DOD neg-atively predicts market returns. Cross-sectional results show that investors correctly perceive the DOD as an overpricing signal and discount fund performance accordingly. Flow-performance sensitivity (FPS) is diminished during high dispersion periods. The ef-fect is stronger for outperforming funds and funds with substantial investments in bubble and high-beta stocks, but weaker for skilled funds. We also discuss ffnancial sophisti-cation of investors and provide evidence that our results are not contingent upon such sophistication.
  • 详情 Belief Dispersion in the Chinese Stock Market and Fund Flows
    This study explores how Chinese mutual fund managers’ degrees of disagreement (DOD) on stock market returns affect investor capital allocation decisions using a novel textbased measure of expectations in fund disclosures. In the time series, the DOD negatively predicts market returns. Cross-sectional results show that investors correctly perceive the DOD as an overpricing signal and discount fund performance accordingly. Flow-performance sensitivity (FPS) is diminished during high dispersion periods. The effect is stronger for outperforming funds and funds with substantial investments in bubble and high-beta stocks, but weaker for skilled funds. We also discuss ffnancial sophistication of investors and provide evidence that our results are not contingent upon such sophistication.