Green bond index

  • 详情 A Cobc-Arma-Svr-Bilstm-Attention Green Bond Index Prediction Method Based on Professional Network Language Sentiment Dictionary
    Green bonds, pivotal to green finance, draw growing attention from scholars and investors. Social media’s proliferation has amplified the influence of investor sentiment, necessitating robust analysis of its market impact. However, general sentiment lexicons often fail to capture domain-specific slang and nuanced expressions unique to China’s bond market, leading to inaccuracies in sentiment analysis. Thus, this study constructs a specialized sentiment lexicon for the green bond market, namely the COBC (Chinese online bond comments sentiment lexicon), to dissect bond market slang and investor remarks. Compared to three general lexicons (Textbook, SnowNLP, and VADER), it improves the average prediction accuracy by approximately 87.2% in sentiment analysis of Chinese online language within the green bond domain. Sentiment scores derived from COBC-based dictionary analysis are systematically integrated as predictive features into a two-stage hybrid predictive model is proposed integrating Support Vector Machine (SVM), Auto-Regressive Moving Average (ARMA), Bidirectional Long Short-Term Memory Networks (BiLSTM), and Attention Mechanisms to forecast China's green bond market, represented by the China Bond 45 Green Bond Index. First, ARMA-SVR is employed to extract residuals and statistical features from the green bond index. Then, the BiLSTM-Attention model is applied to assess the impact of investor sentiment on the index. Empirical results show that incorporating investor sentiment significantly enhances the predictive accuracy of the green bond index, achieving an average of 67.5% reduction in Mean Squared Error (MSE), and providing valuable insights for market participants and policymakers.
  • 详情 An Option Pricing Model Based on a Green Bond Price Index
    In the face of severe climate change, researchers have looked for assistance from financial instruments. They have examined how to hedge the risks of these instruments created by market fluctuations through various green financial derivatives, including green bonds (i.e., fixed-income financial instruments designed to support an environmental goal). In this study, we designed a green bond index option contract. First, we combined an autoregressive moving-average model (AMRA) with a generalized autoregressive conditional heteroskedasticity model (GARCH) to predict the green bond index. Next, we established a fractional Brownian motion option pricing model with temporally variable volatility. We used this approach to predict the closing price of the China Bond–Green Bond Index from 3 January 2017 to 30 December 2021 as an empirical analysis. The trend of the index predicted by the ARMA–GARCH model was consistent with the actual trend and predictions of actual prices were highly accurate. The modified fractional Brownian motion option pricing model improved the pricing accuracy. Our results provide a policy reference for the development of a green financial derivatives market, and can accelerate the transformation of markets towards a more sustainable economic development model.