High-dimension

  • 详情 A Correlational Strategy for the Prediction of High-Dimensional Stock Data by Neural Networks and Technical Indicators
    Stock market prediction provides the decision-making ability to the different stockholders for their investments. Recently, stock technical indicators (STI) emerged as a vital analysis tool for predicting high-dimensional stock data in various studies. However, the prediction performance and error rate still face limitations due to the lack of correlational analysis between STI and stock movement. This paper proposes a correlational strategy to overcome these challenges by analyzing the correlation of STI with stock movement using neural networks with the feature vector. This strategy adopts the Pearson coefficient to analyze STI and close index of stock data from 8 Chinese companies in the Hong Kong stock market. The results reveal the price prediction of BiLSTM outperformed the GRU and LSTM in various datasets and prior studies.
  • 详情 Forecasting Stock Market Return with Anomalies: Evidence from China
    We empirically investigate the relation between anomaly portfolio returns and market return predictability in the Chinese stock market. Using 132 long-leg, short-leg, and long-short anomaly portfolio returns, we employ several shrinkage-based statistical learning methods to capture predictive signals of the anomalies in a high-dimensional setting. We find statistically and economically significant return predictability using long- and short-leg anomaly portfolio returns. Moreover, high arbitrage risk enhances forecasting performance, supporting that the predictability stems from mispricing correction persistence. Unlike the U.S. stock market, we find little evidence that the long-short anomaly portfolios can help predict market return due to the low persistence of asymmetric mispricing correction. We provide simulation evidence to sharpen our understanding of the differences found in the U.S. and Chinese stock markets.
  • 详情 Factor Modeling for Volatility
    We establish a framework to study the factor structure in stock variance under a high-frequency and high-dimensional setup. We prove the consistency of conducting principal component analysis on realized variances in estimating the factor structure. Moreover, based on strong empirical evidence, we propose a multiplicative volatility factor (MVF) model, where stock variance is represented by a common variance factor and a multiplicative lognormal idiosyncratic component. We further show that our MVF model leads to significantly improved volatility prediction. The favorable performance of the proposed MVF model is seen in both US stocks and global equity indices.