Network

  • 详情 How Financial Influencers Rise Performance Following Relationship and Social Transmission Bias
    Using unique account-level data from a leading Chinese fintech platform, we investigate how financial influencers, the key information intermediaries in social finance, attract followers through a process of social transmission bias. We document a robust performance-following pattern wherein retail investors overextrapolate influencers’ past returns rather than rational learning in the social network from their past performance. The transmission bias is amplified by two mechanisms: (1) influencers’ active social engagement and (2) their index fund-heavy portfolios. Evidence further reveals influencers’self-enhancing reporting through selective performance disclosure. Crucially, the dynamics ultimately increase risk exposure and impair returns for follower investors.
  • 详情 Risk-Based Peer Networks and Return Predictability: Evidence from textual analysis on 10-K filings
    We construct a novel risk-based similarity peer network by applying machine learning techniques to extract a comprehensive set of disclosed risk factors from firms' annual reports. We find that a firm's future returns can be significantly predicted by the past returns of its risk-similar peers, even after excluding firms within the same industry. A long-short portfolio, formed based on the returns of these risk-similar peers, generates an alpha of 84 basis points per month. This return predictability is particularly pronounced for negative-return stocks and those with limited investor attention, suggesting that the effect is driven by slow information diffusion across firms with similar risk exposures. Our findings highlight that the risk factors disclosed in 10-K filings contain valuable information that is often overlooked by investors.
  • 详情 Reevaluating Environmental Policies from the Perspectives of Input-Output Networks and Firm Dynamics and Heterogeneity: Carbon Emission Trading in China
    We (re)evaluate the general-equilibrium effects of (environmental) policies from the perspectives of input-output networks and firm dynamics and heterogeneity. Using China’s carbon emission trading system (ETS) as an example, we find that ETS leads to more patent applications, especially the ones associated with low-carbon technologies in the targeted sectors. The effects are muted at the firm level due to selection effects, whereby only larger firms are significantly and positively affected. Meanwhile, larger firms occupy a small share in number but a large share of aggregate outcomes, contributing to the discrepancy between the effects of ETS at the individual firm and aggregate sector levels. The effects also diffuse in input-output networks, leading to more patents in upstream/downstream sectors. We build and estimate the first firm dynamics model with input-output linkages and regulatory policies in the literature and conduct policy experiments. ETS’s effects are amplified given input-output networks.
  • 详情 Hedge Funds Network and Stock Price Crash Risk
    Utilizing a dataset from 2013 to 2022 on China’s listed companies, we explored whether a hedge fund network could help explain the occurrence of Chinese stock crash. First, this study constructs a hedge fund network based on common holdings. Then, from the perspective of network centrality, we examine the effect of hedge fund network on stock crash risk and its mechanism. Our findings show that companies with greater network centrality experience lower stock crash risk. Such results remain valid after alternating measures, using the propensity score matching method, and excluding other network effects. We further document that the centrality of hedge fund network reduces crash risk through three channels: information asymmetry, stock price information content and information delay. In addition, the negative effect of hedge fund network centrality on crash risk is more prominent for non-SOEs firms. In summary, our research shed light on the important role of hedge fund information network in curbing stock crash.
  • 详情 FinTech Platforms and Asymmetric Network Effects: Theory and Evidence from Marketplace Lending
    We conceptually identify and empirically verify the features distinguishing FinTech platforms from non-financial platforms using marketplace lending data. Specifically, we highlight three key features: (i) Long-term contracts introducing default risk at both the individual and platform levels; (ii) Lenders’ investment diversification to mitigate individual default risk; (iii) Platform-level default risk leading to greater asymmetric user stickiness and rendering platform-level cross-side network effects (p-CNEs), a novel metric we introduce, crucial for adoption and market dynamics. We incorporate these features into a model of two-sided FinTech platform with potential failures and endogenous participation and fee structures. Our model predicts lenders’ single-homing, occasional lower fees for borrowers, asymmetric p-CNEs, and the predictive power of lenders’ p-CNEs in forecasting platform failures. Empirical evidence from China’s marketplace lending industry, characterized by frequent market entries, exits, and strong network externalities, corroborates our theoretical predictions. We find that lenders’ p-CNEs are systematically lower on declining or well-established platforms compared to those on emerging or rapidly growing platforms. Furthermore, lenders’ p-CNEs serve as an early indicator of platform survival likelihood, even at the initial stages of market development. Our findings provide novel economic insights into the functioning of multi-sided FinTech platforms, offering valuable implications for both industry practitioners and financial regulators.
  • 详情 Timing the Factor Zoo via Deep Visualization
    This study reconsiders the timing of the equity risk factors by using the flexible neural networks specified for image recognition to determine the timing weights. The performance of each factor is visualized to be standardized price and volatility charts and `learned' by flexible image recognition methods with timing weights as outputs. The performance of all groups of factors can be significantly improved by using these ``deep learning--based'' timing weights. In addition, visualizing the volatility of factors and using deep learning methods to predict volatility can significantly improve the performance of the volatility-managed portfolio for most categories of factors. Our further investigation reveals that the timing success of our method hinges on its ability in identifying ex ante regime switches such as jumps and crashes of the factors and its predictability on future macroeconomic risk.
  • 详情 Riding on the green bandwagon: Supply chain network centrality and corporate greenwashing behavior
    This study empirically investigates the impact of supply chain network centrality on corporate greenwashing behavior. By constructing supply chain networks of Chinese A-share listed companies, we find a strong positive correlation between supply chain network centrality and corporate greenwashing behavior, with an increase of approximately 6.20%. The paper identifies the underlying mechanism as the contagion of the green bandwagon effect within the supply chain, which is observed specifically in the downstream network, particularly among corporate-customers. Additionally, we observe that the positive effects are more pronounced in companies with lower information asymmetry, as well as in labor- and capital-intensive industries and regions with disadvantaged economic conditions. These findings offer important insights for improving corporate environmental responsibility and curbing greenwashing practices.
  • 详情 Risk Spillovers between Industries - New Evidence from Two Periods of High and Low Volatility
    This paper develops a network to analyze inter-industry risk spillovers during high and low volatility periods. Our findings indicate that China's Industrials and Consumer Discretionary exhibit the greatest levels of spillovers in both high and low volatility states. Notably, our results demonstrate the "event-driven" character of structural changes to the network during periods of pronounced risk events. At the same time, the economic and financial network exhibits clear "small world" characteristics. Additionally, in the high volatility stage, the inter-industry risk contagion network becomes more complex, featuring greater connectivity and direct contagion paths. Furthermore, concerning the spillover connection between finance and the real sector, the real economy serves as a net exporter of risk. The study's findings can assist government agencies in preventing risk contagion between the financial market and the real economy. The empirical evidence and policy lessons provide valuable insights for effective risk management.
  • 详情 Non-Controlling Shareholders' Network and Excess Goodwill: Evidence from Listed Companies in China
    Using Chinese publicly listed firms from 2007 to 2020, this study empirically explores the impact of non-controlling shareholders’ network on the corporate excess goodwill. We find that the centrality of non-controlling shareholders’ network significantly decreases the excess goodwill from mergers and acquisitions, indicating that non-controlling shareholders’ network can restrain the goodwill bubbles. Moreover, the inhibitory effect of non-controlling shareholders’ network on excess goodwill stems from pressure-resistant institutional investors and individual investors. This effect is achieved through the information effect, resource effect, and governance effect. Furthermore, this inhibitory effect is more pronounced in firms located in less developed regions and legal environments, and firms with lower audit quality. In conclusion, non-controlling shareholders’ network plays a positive role in the restriction of excess goodwill in listed companies.
  • 详情 Unleashing Fintech's Potential: A Catalyst for Green Bonds Issuance
    Financial technology, also known as Fintech, is transforming our daily life and revolutionizing the financial industry. Yet at present, consensus regarding the effect of Fintech on green bonds market is lacking. With novel data from China, this study documents robust evidence showing that Fintech development can significantly boost green bonds issuance. Further analysis suggests that this promotion effect occurs by empowering intermediary institutions and increasing social environmental awareness. Additionally, we investigate the heterogeneous effect and find that the positive relation is more pronounced for bonds without high ratings and in cities connected with High-Speed Railways network. The results call for the attention from policymakers and security managers to take further notice of Fintech utilization in green finance products.