POT

  • 详情 The value of aiming high: industry tournament incentives and supplier innovation
    Recent research highlights the significant impact of managerial industry tournament incentives on internal firm decisions. However, their potential impact on external stakeholders-in the context of evolving product market relationships-has received scant attention. To address this gap, we examine the effect of customer aspiration, incentivized by CEO industry tournaments (CITIs), on supplier innovation. Utilizing customer-supplier pair-level data from 1992 to 2018, we establish that customer CITIs enhance supplier innovation, both in quantity and quality. Additionally, we identify that CITIs positively impact the relationship-specific innovation and market valuation for suppliers. The effect of CITIs is more pronounced when customers are larger, geographically closer, socially connected, and have long-standing relationships with their suppliers. The results remain robust to alternative specifications and considering potential endogeneity issues. Our study highlights the bright side of executives’ industry tournament incentives, which not only drive innovation within the sector but can also positively influence related sectors within the supply chain.
  • 详情 Climate Risk and Corporate Financial Risk: Empirical Evidence from China
    There is substantial evidence indicating that enterprises are negatively impacted by climate risk, with the most direct effects typically occurring in financial domains. This study examines A-share listed companies from 2007 to 2023, employing text analysis to develop the firm-level climate risk indicator and investigate the influence on corporate financial risk. The results show a significant positive correlation between climate risk and financial risk at the firm level. Mechanism analysis shows that the negative impact of climate risk on corporate financial condition is mainly achieved through three paths: increasing financial constraints, reducing inventory reserves, and increasing the degree of maturity mismatch. To address potential endogeneity, this study applies instrumental variable tests, propensity score matching, and a quasi-natural experiment based on the Paris Agreement. Additional tests indicate that reducing the degree of information asymmetry and improving corporate ESG performance can alleviate the negative impact of climate risk on corporate financial conditions. This relationship is more pronounced in high-carbon emission industries. In conclusion, this research deepens the understanding of the link between climate risk and corporate financial risk, providing a new micro perspective for risk management, proactive governance transformation, and the mitigation of financial challenges faced by enterprises.
  • 详情 Overreaction in China's Corn Futures Markets: Evidence from Intraday High-Frequency Trading Data
    This paper investigates the price overreaction during the initial continuous trading period of the Chinese corn futures market. Using a dynamic modeling algorithm, we identify the overreaction behavior of intraday high-frequency (1 min and 3 min) prices during the first session of daytime trading. The results indicate that the overreaction hypothesis is confirmed for the daytime prices of the Chinese corn futures market. We also find a noticeable reduction in overreaction following the introduction of night trading and this decline appears to diminish over time. Furthermore, this paper conducts an overreaction trading strategy to assess traders’ returns, revealing a slight decline in average return after the introduction of night trading. This study provides valuable insights and recommendations for exchanges and regulators in monitoring overreaction and formulating effective policies to address it.
  • 详情 Pricing Liquidity Under Preference Uncertainty: The Role of Heterogeneously Informed Traders
    This study highlights asymmetries in liquidity risk pricing from the perspective of heterogeneously informed traders facing changing levels of preference uncertainty. We hypothesize that higher illiquidity premium and liquidity risk betas may arise simultaneously in circumstances where investors are asymmetrically informed about their trading counterparts’ preferences and their financial firms’ timely valuations of assets . We first test the time-varying state transition patterns of IML, a traded liquidity factor of the return premium on illiquid-minus-liquid stocks, using a Markov regime-switching framework. We then investigate how the conditional price of the systematic risk of the IML fluctuate over time subject to changing levels of preference uncertainty. Empirical results from the Chinese stock market support our hypotheses that investors’ sensitivity to the IML systematic risk conditionally increase in times of higher preference uncertainty as proxied by the stock turnover and order imbalance. Further policy impact analyses suggest that China’s market liberalization efforts, contingent upon its recent stock connect and margin trading programs, reduce the conditional price of liquidity risk for affected stocks by helping the incorporation of information into stock prices more efficiently. Tighter macroeconomic funding conditions, on the contrary, conditionally increase the price of liquidity that investors require.
  • 详情 The Transformative Role of Artificial Intelligence and Big Data in Banking
    This paper examines how the integration of artificial intelligence (AI) and big data affects banking operations, emphasizing the crucial role of big data in unlocking the full potential of AI. Leveraging a comprehensive dataset of over 4.5 million loans issued by a leading commercial bank in China and exploiting a policy mandate as an exogenous shock, we document significant improvements in credit rating accuracy and loan performance, particularly for SMEs. Specifically, the adoption of AI and big data reduces the rate of unclassified credit ratings by 40.1% and decreases loan default rates by 29.6%. Analyzing the bank's phased implementation, we find that integrating big data analytics substantially enhances the effectiveness of AI models. We further identify significant heterogeneity: improvements are especially pronounced for unsecured and short-term loans, borrowers with incomplete financial records, first-time borrowers, long-distance borrowers, and firms located in economically underdeveloped or linguistically diverse regions. Our findings underscore the powerful synergy between big data and AI, demonstrating their joint capability to alleviate information frictions and enhance credit allocation efficiency.
  • 详情 FinTech Platforms and Asymmetric Network Effects: Theory and Evidence from Marketplace Lending
    We conceptually identify and empirically verify the features distinguishing FinTech platforms from non-financial platforms using marketplace lending data. Specifically, we highlight three key features: (i) Long-term contracts introducing default risk at both the individual and platform levels; (ii) Lenders’ investment diversification to mitigate individual default risk; (iii) Platform-level default risk leading to greater asymmetric user stickiness and rendering platform-level cross-side network effects (p-CNEs), a novel metric we introduce, crucial for adoption and market dynamics. We incorporate these features into a model of two-sided FinTech platform with potential failures and endogenous participation and fee structures. Our model predicts lenders’ single-homing, occasional lower fees for borrowers, asymmetric p-CNEs, and the predictive power of lenders’ p-CNEs in forecasting platform failures. Empirical evidence from China’s marketplace lending industry, characterized by frequent market entries, exits, and strong network externalities, corroborates our theoretical predictions. We find that lenders’ p-CNEs are systematically lower on declining or well-established platforms compared to those on emerging or rapidly growing platforms. Furthermore, lenders’ p-CNEs serve as an early indicator of platform survival likelihood, even at the initial stages of market development. Our findings provide novel economic insights into the functioning of multi-sided FinTech platforms, offering valuable implications for both industry practitioners and financial regulators.
  • 详情 How Does China's Household Portfolio Selection Vary with Financial Inclusion?
    Portfolio underdiversification is one of the most costly losses accumulated over a household’s life cycle. We provide new evidence on the impact of financial inclusion services on households’ portfolio choice and investment efficiency using 2015, 2017, and 2019 survey data for Chinese households. We hypothesize that higher financial inclusion penetration encourages households to participate in the financial market, leading to better portfolio diversification and investment efficiency. The results of the baseline model are consistent with our proposed hypothesis that higher accessibility to financial inclusion encourages households to invest in risky assets and increases investment efficiency. We further estimate a dynamic double machine learning model to quantitatively investigate the non-linear causal effects and track the dynamic change of those effects over time. We observe that the marginal effect increases over time, and those effects are more pronounced among low-asset, less-educated households and those located in non-rural areas, except for investment efficiency for high-asset households.
  • 详情 The Impacts of Green Credit Policy on Green Innovation and Financial Assets Reallocation of Enterprises in China
    This study assesses the impact of China’s Green Credit Guidelines (GCG) 2012 on the quality of firms’ green innovation and their financial asset allocations. While examining patent applications and grants, our findings reveal that, although the GCG 2012 led to a significant increase in green patent applications, its influence on granted patents, especially in the invention category, was minimal. This highlights a discrepancy between innovation intent and quality, suggesting that highpolluting enterprises (HPEs) prioritize rapid policy compliance rather than substantial environmental improvements. However, HPEs seem to prioritize liquidity over long-term financialization, potentially indicating enhanced credit allocation efficiency.
  • 详情 Standing Up or Standing By: Abnormally Hot Temperature and Corporate Environmental Engagement
    This study investigates how abnormally hot temperatures affect firms’ environmental behavior in China. We find that firms exposed to abnormally hot temperatures participate in more environmental engagement. We also find that this improvement effect is driven mainly by environmental concerns, including public concerns, CEOs, and governments. Our results remain intact after an array of robustness tests. Further analysis shows that the effect of abnormally hot temperatures on corporate environmental engagement is more pronounced in SOEs, heavily polluting firms, and firms located closer to local environmental protection agencies. Moreover, the positive impact of environmental engagement on firm value is stronger when firms are exposed to abnormally hot temperatures. Overall, this study sheds light on the potential stimulation of firms’ environmental actions by global warming, which is yet to be fully understood.
  • 详情 The Safety Shield: How Classified Boards Benefit Rank-and-File Employees
    This study examines how classified boards affect workplace safety, an important dimension of employee welfare. Using comprehensive establishment-level injury data from the U.S. Occupational Safety and Health Administration and a novel classified board database, we document that firms with classified boards experience 12-13% lower workplace injury rates. To establish causality, we employ instrumental variable and difference-in-differences approaches exploiting staggered board declassifications. The safety benefits of classified boards operate through increased safety expenditures, reduced employee workloads, and enhanced external monitoring through analyst coverage. These effects are strongest in financially constrained firms and those with weaker monitoring mechanisms. Our findings support the bonding hypothesis that anti-takeover provisions facilitate long-term value creation by protecting stakeholder relationships and provide novel evidence that classified boards benefit rank-and-file employees, not just executives and major customers. The results reveal an important mechanism through which governance structures impact employee welfare and challenge the conventional view that classified boards primarily serve managerial entrenchment.