Valuation

  • 详情 What is China's Copper Supply Risk Under Clean Energy Transition Scenarios?
    Copper resources are widely used in power networks and clean - energy tech like PV panels, wind turbines, and NEVs. Restricted by domestic resources, China's copper supply chain is vulnerable with risks. Based on six supply - chain stages, this paper builds an assessment system for China's copper supply - chain risks. By adopting an improved Benefit of Doubt (BOD) model, this paper has systematically evaluated the risks in the whole copper supply chain, revealing the trends and deep-rooted causes of these risks. The findings of this study reveal that: (1) The supply chain risk of China's copper resources presents a significant upward trend over the past 15 years; (2) The current supply chain risks in copper are mainly concentrated at the stages of import, production, and application; and the recycling risk has a great potential for reducing the copper supply chain risks in the future. Based on these findings, this paper proposes two policy recommendations: (1) Develop diversified channels for importing copper resources and optimize overseas investment patterns and; (2) Improve the domestic supply capacity of secondary copper resources and reduce the risks at the recycling stage.
  • 详情 The Demand, Supply, and Market Responses of Corporate ESG Actions: Evidence from a Nationwide Experiment in China
    We conducted a nationwide field experiment with 4,800+ Chinese-listed companies, randomly raising ESG concerns to their management teams via high-visibility and high-stakes online platforms. Tracking the full impact-generating process, we find that companies respond to our concerns by providing high-quality answers, publishing ESG reports, and making commitments to investors. Over time, Environmental (E) inquiries boost stock valuations, while Governance (G) concerns prompt skepticism. Productive and opaque firms are more likely to respond, consistent with a signaling model where costly ESG actions signal firm quality under information asymmetry. Overall, ESG actions are likely driven by profit-oriented signaling rather than values-based motives.
  • 详情 ESG Ratings and Corporate Value: Exploring the Mediating Roles of Financial Distress and Financing Constraints
    The growing significance of sustainable development has underscored the importance of integrating corporate sustainability indicators into corporate strategies. As external stakeholders increasingly emphasize corporate environmential performance, social responsibility and governance (ESG), understanding its impact on corporate value becomes essential, especially in emerging markets like China. This research aims to bridge these knowledge gaps by empirically investigating the influence of ESG ratings on firms’ value among Chinese listed firms, with a special emphasis on the mediating roles played by financial distress and financing constraints. By analyzing data from listed companies of China over the period 2018 to 2022, this research explores the correlation between firms’ value and ESG ratings. The findings indicate a positive association between firms’ value and ESG ratings. Enhanced ESG ratings directly boost market valuation and indirectly elevate firm value by mitigating financing constraints and financial distress. Further analysis reveals the positive effects of ESG ratings are more noticeable in industries that are not heavily polluting and in state-owned enterprises. This research provides valuable insights for enterprise management by systematically examining how ESG ratings contribute to corporate value through the mitigation of financial distress and constraints, while also highlighting the variations in ESG strategy implementation across different types of enterprises.
  • 详情 Measurement and Spatial-Temporal Evolution Analysis of the High-Quality Development Level of China's Marine Economy
    This paper constructs an evaluation index system for the high-quality development of the marine economy based on the five dimensions of the new development paradigm. It employs entropy method, kernel density analysis, and Dagum Gini coefficient method to analyze the high-quality development level of China's marine economy and its spatial-temporal evolution from 2013 to 2022. The findings reveal that: (1) The comprehensive index for the high-quality development of China's marine economy exhibits an overall fluctuating upward trend; (2) The high-quality development levels of the marine economy in the eastern and southern marine economic circles are both above the national average, while that in the northern marine economic circle is below the national average; (3) The focus of high-quality development in China's marine economy is shifting towards economically developed regions along the southeast coast, demonstrating a trend of "higher in the south and lower in the north." Moreover, the gap in high-quality development of the marine economy among the three major marine economic circles is gradually narrowing, and the high-quality development of regional marine economies tends to become more coordinated.
  • 详情 ESG Rating Disagreement and Price Informativeness with Heterogeneous Valuations
    In this paper, we present a rational expectation equilibrium model in which fundamental and ESG traders hold heterogeneous valuations towards the risky asset. Trading occurs based on private information and price signal which is determined by a weighted combination of these diverse valuations. Our findings indicate that higher level of ESG rating disagreement increases ESG information uncertainty, thereby reducing trading intensity among ESG traders and attenuating the price informativeness about ESG. We further discover that allowing fundamental traders access to ESG information increases the coordination possibilities in the financial market, leading to multiple equilibria exhibiting characteristics of strategic substitutability and complementarity. Additionally, through measuring the ESG rating disparities among four prominent agencies in China, we deduce that ESG rating disagreement negatively impacts price informativeness by decreasing stock illiquidity.
  • 详情 Research on SVM Financial Risk Early Warning Model for Imbalanced Data
    Background Economic stability depends on the ability to foresee financial risk, particularly in markets that are extremely volatile. Unbalanced financial data is difficult for traditional Support Vector Machine (SVM) models to handle, which results in subpar crisis detection capabilities. In order to improve financial risk early warning models, this study combines Gaussian SVM with stochastic gradient descent (SGD) optimisation (SGD-GSVM). Methods The suggested model was developed and assessed using a dataset from China's financial market that included more than 2,000 trading days (January 2022–February 2024). Missing value management, Min-Max scaling for normalising numerical characteristics, and ADASYN oversampling for class imbalance were all part of the data pretreatment process. Key evaluation metrics, such as accuracy, recall, F1-score, G-Mean, AUC-PR, and training time, were used to train and evaluate the SGD-GSVM model to Standard GSVM, SMOTE-SVM, CS-SVM, and Random Forest. Results Standard GSVM (76% accuracy, 1,200s training time) and CS-SVM (81% accuracy, 1,300s training time) were greatly outperformed by the suggested SGD-GSVM model, which obtained the greatest accuracy of 92% with a training time of just 180 seconds. Additionally, it showed excellent recall (90%) and precision (82%), making it the most effective and efficient model for predicting financial risk. Conclusion This work offers a new method for early warning of financial risk by combining SGD optimisation with Gaussian SVM and employing adaptive oversampling for data balancing. The findings show that SGD-GSVM is the best model because it strikes a balance between high accuracy and computational economy. Financial organisations can create real-time risk management plans with the help of the suggested technique. For additional performance improvements, hybrid deep learning approaches might be investigated in future studies.
  • 详情 Measuring and Advancing Smart Growth: A Comparative Evaluation of Wuhu and Colima
    In the mid-1990s, the concept of smart growth emerged in the United States as a critical response to the phenomenon of suburban sprawl. To promote sustainable urban development, it is necessary to further investigate the principles and applications of smart growth. In this paper, we proposed a Smart Growth Index (SGI) as a standard for measuring the degree of responsible urban development. Based on this index, we constructed a comprehensive 3E evaluation model—covering economic prosperity, social equity, and environmental sustainability—to systematically assess the level of smart growth. For empirical analysis, we selected two medium-sized cities from different continents: Wuhu County, China, and Colima, Mexico. Using an improved entropy method, we evaluated the degree of smart growth in recent years and analyzed the contributions of various policies to sustainable urban development. Then, guided by the ten principles of smart growth, we linked theoretical insights to practical challenges and formulated a development plan for both cities. To forecast long-term trends, we employed trend extrapolation based on historical data, enabling the prediction of SGI values for 2020, 2030, and 2050. The results indicate that Wuhu demonstrates a greater potential for smart growth compared with Colima. We also simulated a scenario in which the population of both cities increased by 50 percent and then re-evaluated the SGI. The analysis suggests that while rapid population growth tends to slow the pace of smart growth, it does not necessarily exert a negative impact on the overall trajectory of sustainable development. Finally, a study on the application of Transit-Oriented Development (TOD) theory in Wuhu County was conducted. Based on this analysis, we proposed several policy recommendations aimed at enhancing the city’s sustainable urban development.
  • 详情 The value of aiming high: industry tournament incentives and supplier innovation
    Recent research highlights the significant impact of managerial industry tournament incentives on internal firm decisions. However, their potential impact on external stakeholders-in the context of evolving product market relationships-has received scant attention. To address this gap, we examine the effect of customer aspiration, incentivized by CEO industry tournaments (CITIs), on supplier innovation. Utilizing customer-supplier pair-level data from 1992 to 2018, we establish that customer CITIs enhance supplier innovation, both in quantity and quality. Additionally, we identify that CITIs positively impact the relationship-specific innovation and market valuation for suppliers. The effect of CITIs is more pronounced when customers are larger, geographically closer, socially connected, and have long-standing relationships with their suppliers. The results remain robust to alternative specifications and considering potential endogeneity issues. Our study highlights the bright side of executives’ industry tournament incentives, which not only drive innovation within the sector but can also positively influence related sectors within the supply chain.
  • 详情 Cracking the Code: Bayesian Evaluation of Millions of Factor Models in China
    We utilize the Bayesian model scan approach to examine the best performing models in a set of 15 factors discovered in the literature, plus principal components (PCs) of anomalies unexplained by the initial factors in the Chinese A-share market. The Bayesian comparison of approximately eight million models shows that HML, MOM, IA, EG, PEAD, SMB, VMG,PMO, plus the four PCs, PC1, PC6, PC7, PC8 are the best supported specification in terms of marginal likelihoods and posterior model probabilities. We also find that the best model outperforms existing factor models in terms of pricing tests and out-of-sample Sharpe ratio.