deep neural networks

  • 详情 New Forecasting Framework for Portfolio Decisions with Machine Learning Algorithms: Evidence from Stock Markets
    This paper proposes a new forecasting framework for the stock market that combines machine learning algorithms with several technical analyses. The paper considers three different algorithms: the Random Forests (RF), the Gradient-boosted Trees (GBT), and the Deep Neural Networks (DNN), and performs forecasting tasks and statistical arbitrage strategies. The portfolio weight optimization strategy is also proposed to capture the model's return and risk information from output probabilities. The paper then uses the stock data in the Chinese A-share market from January 1, 2011, to December 31, 2020, and observes that all three machine learning models achieve significant returns in the Chinese stock market. The DNN achieves an average daily return of 0.78% before transaction costs, outperforming the 0.58% of the RF and 0.48% of the GBT, far exceeding the general market level. The performance of the weighted portfolio based on the ESG score is also improved in all three machine learning strategies compared to the equally weighted portfolio. These results help bridge the gap between academic research and professional investments and offer practical implications for financial asset pricing modelling and corporate investment decisions.
  • 详情 Deep Learning Stock Portfolio Allocation in China: Treat Multi-Dimension Time-Series Data as Image
    A deep learning method is applied to predict stock portfolio allocation in the Chinese stock market. We use 6 original price and volume series as benchmark model settings and further explore the model's predictive performance with social media sentiment. Our results show that our model can achieve a high out-of-sample Sharp ratio and annual return. Moreover, social media sentiment could increase the performance for both Sharp ratio and annual return while reducing annual volatility. We provide an end-to-end stock portfolio allocation model based on deep neural networks.