factor models

  • 详情 A Financing-Based Misvaluation Factor and the Cross-Section of Expected Returns
    Behavioral theories suggest that investor misperceptions and market mispricing will be correlated across firms. We use equity and debt financing to identify common misval- uation across firms. A zero-investment portfolio (UMO, undervalued minus overvalued) built from repurchase and issue firms captures comovement in returns beyond that in some standard multifactor models, and substantially improves the Sharpe ratio of the tangency portfolio. Loadings on UMO incrementally predict the cross-section of returns on both portfolios and individual stocks, even among firms not recently involved in external fi- nancing activities. Further evidence suggests that UMO loadings proxy for the common component of a stock’s misvaluation.
  • 详情 A Comparison of Factor Models in China
    We apply various test portfolios and alternative statistical methodologies to evaluate the performance of eleven prominent asset pricing models. To compile the test portfolios, we construct 105 anomalies in China and apply the 23 significant anomalies as test assets for model comparison. The results indicate that in the time-series test and anomalies explanation, the Hou et al. (2019) five-factor q model exhibits the best overall performance. The pairwise cross-sectional R^2s and the multiple model comparison tests affirm that the Hou et al. (2019) five-factor q model, the Fama and French (2018) six-factor (FF6) model and the Kelly et al. (2019) five-factor Instrumented Principal Component Analysis (IPCA5) model stand out as the top performers. Notably, the performance of the five-factor q model is insensitive to variations in experimental design.
  • 详情 A Filter to the Level, Slope, and Curve Factor Model for the Chinese Stocks
    This paper studies the Level, Slope, and Curve factor model under different tests in the Chinese stock market. Empirical asset pricing tests reveal that the slope factor in the model represents either reversal or momentum effect for the Chinese stocks. Further tests on individual stocks demonstrate that the Level, Slope, and Curve model using effective predictor variables outperforms other common factor models, thus a filter in virtue of multiple hypothesis testing is designed to identify the effective predictor variables. In the filter models, the cross-section anomaly factors perform better than the time-series anomaly factors under different tests, and trading frictions, momentum, and growth categories are potential drivers of Chinese stock returns.
  • 详情 Self-Attention Based Factor Models
    This study introduces a novel factor model based on self-attention mechanisms. This model effectively captures the non-linearity, heterogeneity, and interconnection between stocks inherent in cross-sectional pricing problems. The empirical results from the Chinese stock market reveal compelling ffndings, surpassing other benchmarks in terms of profftability and prediction accuracy measures, including average return, Sharpe ratio, and out-of-sample R2. Moreover, this model demonstrates both practical applicability and robustness. These results provide valuable evidence supporting the existence of the three aforementioned properties in crosssectional pricing problems from a theoretical standpoint, and this model offers a powerful tool for implementing profftable long-short strategies.
  • 详情 Factors in the Cross-Section of Chinese Corporate Bonds: Evidence from a Reduced-Rank Analysis
    We investigate the cross-sectional factors of Chinese corporate bond returns via the reducedrank regression analysis (RRA) proposed by He et al. (2022). We collect 37 individual bond characteristics in the extant literature using a new dataset and construct 40 factor portfolios. Empirically, we find that the four-factor models created by RRA outperform the traditional factor models, PCA, and PLS factor models, both in-sample and out-of-sample. Among the 40 factors, the bond market factor is the most substantial predictor of future bond returns. In contrast, other factors provide limited incremental information for the cross-sectional pricing. Therefore, it is necessary to find more new bond factors. We further find that stock market anomalies do not improve the explanatory power of the RRA factor models. In particular, stock market anomalies can only partially explain the systematic part of bond returns in the RRA framework and have almost no explanatory power for the idiosyncratic component.
  • 详情 Salience Theory Based Factors in China
    We have developed two novel salience factors — PMOR and PMOV based on the stock’s salient return and salient trading volume (as proposed by Cosemans and Frehen, 2021, and Sun et al., 2023). Notably, these factors cannot be accounted for by existing factor models in China. When we integrate the salience trading volume factor — PMOV into Liu et al. (2019)’s Chinese three-factor model, the resulting four-factor model outperforms other models including the Chinese four-factor model in explaining 33 significant anomalies in China.