information

  • 详情 The Optimality of Gradualism in Economies with Financial Markets
    We develop a model economy with active financial markets in which a policymaker's adoption of a gradualistic approach constitutes a Bayesian Nash equilibrium. In our model, the ex ante policy proposal influences the supply side of the economy, while the ex post policy action affects the demand side and shapes market equilibrium. When choosing policies, the policymaker internalizes the impact of her decisions on the precision of the firm-value signal. Moreover, financial markets provide a price signal that informs the government. The policymaker learns about the productivity shocks not only from firm-value performance signals but also from financial market prices. Access to information through both channels creates strong incentives for the policymaker to adopt a gradualistic approach in a time-consistent manner. Smaller policy steps yield more precise information about the productivity shock. These results hold robustly for both exogenous and endogenous information models.
  • 详情 Climate Risk and Corporate Financial Risk: Empirical Evidence from China
    There is substantial evidence indicating that enterprises are negatively impacted by climate risk, with the most direct effects typically occurring in financial domains. This study examines A-share listed companies from 2007 to 2023, employing text analysis to develop the firm-level climate risk indicator and investigate the influence on corporate financial risk. The results show a significant positive correlation between climate risk and financial risk at the firm level. Mechanism analysis shows that the negative impact of climate risk on corporate financial condition is mainly achieved through three paths: increasing financial constraints, reducing inventory reserves, and increasing the degree of maturity mismatch. To address potential endogeneity, this study applies instrumental variable tests, propensity score matching, and a quasi-natural experiment based on the Paris Agreement. Additional tests indicate that reducing the degree of information asymmetry and improving corporate ESG performance can alleviate the negative impact of climate risk on corporate financial conditions. This relationship is more pronounced in high-carbon emission industries. In conclusion, this research deepens the understanding of the link between climate risk and corporate financial risk, providing a new micro perspective for risk management, proactive governance transformation, and the mitigation of financial challenges faced by enterprises.
  • 详情 ESG news and firm value: Evidence from China’s automation of pollution monitoring
    We study how financial markets integrate news about pollution abatement costs into firm values. Using China’s automation of pollution monitoring, we find that firms with factories in bad-news cities---cities that used to report much lower pollution than the automated reading---see significant declines in stock prices. This is consistent with the view that investors expect firms in high-pollution cities to pay significant adjustment and abatement costs to become “greener.” However, the efficiency with which such information is incorporated into prices varies widely---while the market reaction is quick in the Hong Kong stock market, it is considerably delayed in the mainland ones, resulting in a drift. The equity markets expect most of these abatement costs to be paid by private firms and not by state-owned enterprises, and by brown firms and not by green firms.
  • 详情 Soft Information Imbalance Is Bad for Fair Credit Allocation
    Using bank-county-year level mortgage application data, we document that minority borrowers are systematically evaluated with less soft information compared to White borrowers within the same bank-county branch. Using variation in local sunshine as an instrument and conducting a series of robustness checks, we show that the soft information imbalance significantly increases the denial gap between minority and White applicants. However, this imbalance does not appear to affect pricing disparities. Further analysis shows that internal capital reallocation to under-resourced bank branches can serve as an effective strategy to reduce soft information imbalances and, thus, promote more equitable credit allocation. Our results highlight that soft information imbalance is an overlooked but significant factor driving disparities against minority borrowers.
  • 详情 Different Opinion or Information Asymmetry: Machine-Based Measure and Consequences
    We leverage machine learning to introduce belief dispersion measures to distinguish different opinion (DO) and information asymmetry (IA). Our measures align with the human-based measure and relate to economic outcomes in a manner consistent with theoretical prediction: DO positively relates to trading volume and negatively linked to bid-ask spread, whereas IA shows the opposite effects. Moreover, IA negatively predicts the cross-section of stock returns, while DO positively predicts returns for underpriced stocks and negatively for overpriced ones. Our findings reconcile conflicting disagree-return relations in the literature and are consistent with Atmaz and Basak (2018)’s model. We also show that the return predictability of DO and IA stems from their unique economic rationales, underscoring that components of disagreement can influence market equilibrium via distinct mechanisms.
  • 详情 When Walls Become Targets: Strategic Speculation and Price Dynamics under Price Limit
    This study shows how price limit rules, intended to stabilize markets, inadvertently distort price dynamics by fostering strategic speculation. Through a dynamic rational expectations model, we demonstrate that price limits induce post limit-up price jumps by impeding full information incorporation, enabling speculators to artificially push prices to upper bounds and exploit uninformed traders. The model predicts two distinct patterns: (1) stocks closing at price limits exhibit positive overnight returns followed by long-term reversals, and (2) stocks retreating from upper bounds suffer sharp reversals with partial recovery. Empirical analysis confirms these predictions. A natural experiment from China’s 2020 GEM reform —- which widened the price limit -— further provides causal evidence that relaxed limits mitigate speculative distortions.
  • 详情 How Financial Influencers Rise Performance Following Relationship and Social Transmission Bias
    Using unique account-level data from a leading Chinese fintech platform, we investigate how financial influencers, the key information intermediaries in social finance, attract followers through a process of social transmission bias. We document a robust performance-following pattern wherein retail investors overextrapolate influencers’ past returns rather than rational learning in the social network from their past performance. The transmission bias is amplified by two mechanisms: (1) influencers’ active social engagement and (2) their index fund-heavy portfolios. Evidence further reveals influencers’self-enhancing reporting through selective performance disclosure. Crucially, the dynamics ultimately increase risk exposure and impair returns for follower investors.
  • 详情 Attentive Market Timing
    This paper provides evidence that some seasoned equity offerings are motivated by public information. We test this channel in the supply chain setting, where supplier managers are more attentive than outside investors to customer news. We find that supplier firms are more likely to issue seasoned equity when their customer firms have negative earnings surprises. The results are mitigated when there is common scrutiny on the customer-supplier firm pairs by outside investors and analysts. Furthermore, long-run stock market performance appears to be worse for firms that issue seasoned equity following the negative earnings surprise of their customer firms.
  • 详情 Risk-Based Peer Networks and Return Predictability: Evidence from textual analysis on 10-K filings
    We construct a novel risk-based similarity peer network by applying machine learning techniques to extract a comprehensive set of disclosed risk factors from firms' annual reports. We find that a firm's future returns can be significantly predicted by the past returns of its risk-similar peers, even after excluding firms within the same industry. A long-short portfolio, formed based on the returns of these risk-similar peers, generates an alpha of 84 basis points per month. This return predictability is particularly pronounced for negative-return stocks and those with limited investor attention, suggesting that the effect is driven by slow information diffusion across firms with similar risk exposures. Our findings highlight that the risk factors disclosed in 10-K filings contain valuable information that is often overlooked by investors.
  • 详情 AI Adoption and Mutual Fund Performance
    We investigate the economic impact of artificial intelligence (AI) adoption in the mutual fund industry by introducing a novel measure of AI adoption based on the presence of AI skilled personnel at fund management firms. We provide robust evidence that AI adoption enhances fund performance, primarily by improving risk management, increasing attentive capacity, and enabling faster information processing. Furthermore, we find that mutual funds with higher levels of AI adoption experience greater investor net flows and exhibit lower flow-performance sensitivity. While AI adoption benefits individual funds, we find no evidence of aggregate performance improvements at the industry level.