nowcasting

  • 详情 Does Futures Market Information Improve Macroeconomic Forecasting: Evidence from China
    This paper investigates the contribution of futures market information to enhancing the predictive accuracy of macroeconomic forecasts, using data from China. We employ three cat-egories of predictors: monthly macroeconomic factors, daily commodity futures factors, and daily financial futures variables. Principal component analysis is applied to extract key fac-tors from large data sets of monthly macroeconomic indicators and daily commodity futures contracts. To address the challenge of mixed sampling frequencies, these predictors are incor-porated into factor-MIDAS models for both nowcasting and long-term forecasting of critical macroeconomic variables. The empirical results indicate that financial futures data provide modest improvements in forecasting secondary and tertiary GDP, whereas commodity futures factors significantly improve the accuracy of PPI forecasts. Interestingly, for PMI forecast-ing, models relying exclusively on futures market data, without incorporating macroeconomic factors, achieve superior predictive performance. Our findings underscore the significance of futures market information as a valuable input to macroeconomic forecasting.
  • 详情 链上数据增长与公司基本面、股票回报的关联
    本文利用2015-2021年的公司层面数据,将链上数据与公司基本面以及资产估值联系在一起。这是一项开创性的、大样本的研究。我们发现,季度同比的区块链数据增长(BDG)包含了公司价值信息,能够预测公司资产增长、销售增长、ROA、标准化意外盈利(SUE)以及专利创新产出。BDG也可以预测股价回报,尤其是在未来盈余公告发布的时间段。基于此构建的BDG多空组合能产生年化10.56%的回报。BDG的预测能力是稳健的,在考虑了行业、地区以及其他短期预测因子之后;BDG的预测能力在国际样本中同样能展现出来。本文进一步讨论了背后的经济机制(例如,持续信息披露以及信息不对称的减少)。异质性分析显示,信息不对称更高、披露质量更低、行业竞争更强、公众信任更低的公司,能从区块链以及链上数据增长中获得更多的收益,主要体现在公司运作和融资方面。