portfolio

  • 详情 Optimizing Market Anomalies in China
    We examine the risk-return trade-off in market anomalies within the A-share market, showing that even decaying anomalies may proxy for latent risk factors. To balance forecast bias and variance, we integrate the 1/N and mean-variance frameworks, minimizing out-of-sample forecast error. Treating anomalies as tradable assets, we construct optimized long-short portfolios with strong performance: an average annualized Sharpe ratio of 1.56 and a certainty-equivalent return of 29.4% for a mean-variance investor. These premiums persist post-publication and are largely driven by liquidity risk exposures. Our results remain robust to market frictions, including short-sale constraints and transaction costs. We conclude that even decaying market anomalies may reflect priced risk premia rather than mere mispricing. This research provides practical guidance for academics and investors in return predictability and asset allocation, especially in the unique context of the Chinese A-share market.
  • 详情 Time-Varying Arbitrage Risk and Conditional Asymmetries in Liquidity Risk Pricing: A Behavioral Perspective
    This study investigates the link between market arbitrage risk and liquidity risk pricing in a conditional asset pricing framework. We estimate comparative models both at the portfolio and firm level in the Chinese A- and B-shares to test behavioral hypotheses with respect to foreign ownership restrictions and market segmentation. Results show that conditional liquidity premium and risk betas exhibit pronounced asymmetry across share classes which could be attributed to differentiated levels of market mispricing. Specifically, stocks with a greater degree of information asymmetry and retail ownership are more sensitive to liquidity risks when the market arbitrage risk increase. Further policy impact analysis shows that China’s market liberalization efforts, contingent upon its recent stock connect programs, conditionally reduce the price of liquidity risk for connected stocks.
  • 详情 Trade Friction and Evolution Process of Price Discovery in China's Agricultural Commodity Markets
    This paper is the first to examine the evolution of price discovery in agricultural commodity markets across the four distinct phases determined by trade friction and trade policy uncertainty. Using cointegrated vector autoregressive model and common factor weights, we report that corn, cotton, soybean meal, and sugar (palm oil, soybean, soybean oil, and wheat) futures (spot) play a dominant role in price discovery during the full sample period. Moreover, the leadership in price discovery evolves over time in conjunction with changes in trade friction phases. However, such results vary across commodities. We also report that most of the agricultural commodity markets are predominantly led by futures markets in price discovery during phase Ⅲ, except for the wheat market. Our results indicate that taking trade friction into consideration would benefit portfolio managements and diversifying agricultural trade partners holds significance.
  • 详情 FinTech and Consumption Resilience to Uncertainty Shocks: Evidence from Digital Wealth Management in China
    Developing countries are taking advantage of FinTech tools to provide more people with convenient access to financial market investment through digital wealth management. Using COVID-19 as an uncertainty shock, we examine whether and how digital wealth management affects the resilience of consumption to shocks based on a unique micro dataset provided by a leading Big Tech platform, Alipay in China. We find that digital wealth management mitigates the response of consumption to uncertainty shocks: residents who participate in digital wealth management, especially in risky asset investments, have a lower reduction in consumption. Importantly, digital wealth management helps improve financial inclusion, with a more pronounced mitigation effect among residents with lower-level wealth, living in less developed areas, and those with lower-level conventional finance accessibility. The mitigation effect works through the wealth channel: those who allocate a larger proportion of risky assets in their portfolio and obtain a higher realized return show more resilience of consumption to negative shocks. We also find that digital wealth management substitutes for conventional bank credit but serves as a complement to FinTech credit in smoothing consumption during uncertainty shocks. Digital wealth management provides a crucial way to improve financial inclusion and the resilience of consumption to shocks.
  • 详情 How does E-wallet affect monetary policy transmission: A mental accounting interpretation
    With fintech growth and smartphone adoption, e-wallets, which enable instant transactions while offering cash management products with financial returns, have become increasingly prevalent. Using a unique dataset from Alipay, the world’s largest e-wallet provider, we find that holdings in Yu’EBao—an investment product usable for payments—are less affected by interest rate changes than similar assets without payment functions. This effect is stronger for users who depend on Yu’EBao for daily spending, during peak payment periods, or among less experienced investors. Our findings show that Yu’EBao reduces retail fund flow to riskier assets by 7.7% for every one-percentage-point interest rate cut, dampening monetary policy transmission through the portfolio rebalancing channel.
  • 详情 Attracting Investor Flows through Attracting Attention
    We study the influence of investor attention on mutual fund investors' fund selection and fund managers' portfolio choice. Using the Google Search Volume Index to measure investor attention on individual stocks, we find fund investors tend to direct more capital to mutual funds holding more high-attention stocks; fund managers tend to perform window-dressing trading to increase the portfolio holdings of high-attention stocks displayed to investors. Our results suggest that funds, particularly those with strong incentives, strategically trade on stock attention to attract investor flows. This strategic trading behaviour is also associated with fund underperformance and leads to larger non-fundamental volatility of holding stocks.
  • 详情 Factor Timing in the Chinese Stock Market
    I conduct an exploratory study about the feasibility of factor timing in the Chinese stock market, covering 24 representative and well-identiffed risk factors in ten categories from the literature. The long-short portfolio of short-term reversal exhibits strong and statistically signiffcant out-of-sample predictability, which is robust across various models and all types of predictors. However, such results are not evident in the prediction of all other factors’ long-short portfolios, as well as all factors’ long-wing and short-wing portfolios. The high exposure to the market beta, together with the unpredictability of the market return, explains these failures to some degree. On the other hand, a simple investment strategy based on predicted returns of the reversal factor’s long-short portfolio obtains a signiffcant return three times higher than the simple buy-and-hold strategy in the sample period, with a signiffcant annualized 20.4% CH-3 alpha.
  • 详情 How Does China's Household Portfolio Selection Vary with Financial Inclusion?
    Portfolio underdiversification is one of the most costly losses accumulated over a household’s life cycle. We provide new evidence on the impact of financial inclusion services on households’ portfolio choice and investment efficiency using 2015, 2017, and 2019 survey data for Chinese households. We hypothesize that higher financial inclusion penetration encourages households to participate in the financial market, leading to better portfolio diversification and investment efficiency. The results of the baseline model are consistent with our proposed hypothesis that higher accessibility to financial inclusion encourages households to invest in risky assets and increases investment efficiency. We further estimate a dynamic double machine learning model to quantitatively investigate the non-linear causal effects and track the dynamic change of those effects over time. We observe that the marginal effect increases over time, and those effects are more pronounced among low-asset, less-educated households and those located in non-rural areas, except for investment efficiency for high-asset households.
  • 详情 Information Source Diversity and Analyst Forecast Bias
    This study investigates the impact of analysts' information source diversity on forecast bias and investment returns. We combine the GPT-4o model and text similarity, to extract the names of information sources from the text of analyst in-depth reports. Using 349,200 sources, we calculate information diversity scores based on the variety of data sources to measure analysts’ ability of selecting relevant information. The findings reveal that higher information diversity significantly reduces forecast bias and enhances portfolio returns. The effect is particularly pronounced for large companies, state-owned enterprises, those with low analyst coverage, low firm-specific experience, and reports with positive forecast revisions. Institutional investors recognize the value of this skill, while retail investors remain largely unaware, which contributes to financial inequality. This study highlights the critical role of information diversity in analyst performance.
  • 详情 The Profitability Premium in Commodity Futures Returns
    This paper employs a proprietary data set on commodity producers’ profit margins (PPMG) and establishes a robust positive relationship between commodity producers’ profitability growth and future returns of commodity futures. The spread portfolio that longs top-PPMG futures contracts and shorts bottom-PPMG futures contracts delivers a statistically significant average weekly return of 36 basis points. We further demonstrate that profitability is a strong SDF factor in commodity futures market. We theoretically justify our empirical findings by developing an investment-based pricing model, in which producers optimally adjust their production process by maximizing profits subject to aggregate profitability shocks. The model reproduces key empirical results through calibration and simulation.