rating

  • 详情 Does Futures Market Information Improve Macroeconomic Forecasting: Evidence from China
    This paper investigates the contribution of futures market information to enhancing the predictive accuracy of macroeconomic forecasts, using data from China. We employ three cat-egories of predictors: monthly macroeconomic factors, daily commodity futures factors, and daily financial futures variables. Principal component analysis is applied to extract key fac-tors from large data sets of monthly macroeconomic indicators and daily commodity futures contracts. To address the challenge of mixed sampling frequencies, these predictors are incor-porated into factor-MIDAS models for both nowcasting and long-term forecasting of critical macroeconomic variables. The empirical results indicate that financial futures data provide modest improvements in forecasting secondary and tertiary GDP, whereas commodity futures factors significantly improve the accuracy of PPI forecasts. Interestingly, for PMI forecast-ing, models relying exclusively on futures market data, without incorporating macroeconomic factors, achieve superior predictive performance. Our findings underscore the significance of futures market information as a valuable input to macroeconomic forecasting.
  • 详情 A latent factor model for the Chinese option market
    It is diffffcult to understand the risk-return trade-off in option market with observable factormodels. In this paper, we employ a latent factor model for delta-hedge option returns over a varietyof important exchange traded options in China, based on the instrumented principal componentanalysis (IPCA). This model incorporates conditional betas instrumented by option characteristics,to tackle the diffffculty caused by short lifespans and rapidly migrating characteristics of options. Ourresults show that a three-factor IPCA model can explain 19.30% variance in returns of individualoptions and 99.23% for managed portfolios. An asset pricing test with bootstrap shows that there isno unexplained alpha term with such a model. Comparison with observable factor model indicatesthe necessity of including characteristics. We also provide subsample analysis and characteristicimportance.
  • 详情 The Transformative Role of Artificial Intelligence and Big Data in Banking
    This paper examines how the integration of artificial intelligence (AI) and big data affects banking operations, emphasizing the crucial role of big data in unlocking the full potential of AI. Leveraging a comprehensive dataset of over 4.5 million loans issued by a leading commercial bank in China and exploiting a policy mandate as an exogenous shock, we document significant improvements in credit rating accuracy and loan performance, particularly for SMEs. Specifically, the adoption of AI and big data reduces the rate of unclassified credit ratings by 40.1% and decreases loan default rates by 29.6%. Analyzing the bank's phased implementation, we find that integrating big data analytics substantially enhances the effectiveness of AI models. We further identify significant heterogeneity: improvements are especially pronounced for unsecured and short-term loans, borrowers with incomplete financial records, first-time borrowers, long-distance borrowers, and firms located in economically underdeveloped or linguistically diverse regions. Our findings underscore the powerful synergy between big data and AI, demonstrating their joint capability to alleviate information frictions and enhance credit allocation efficiency.
  • 详情 Cracking the Glass Ceiling, Tightening the Spread: The Bond Market Impacts of Board Gender Diversity
    This paper investigates whether increased female representation on corporate boards affects firms’ bond financing costs. Exploiting the 2017 Big Three’s campaigns as a plausibly exogenous shock, we document that firms experiencing larger increases in female board representation, induced by the campaigns, experience significant reductions in bond yield spreads and improvements in credit ratings. We identify reduced leverage and enhanced workplace environment as key mechanisms, and show that the effects are stronger among firms with greater tail risk and information asymmetry. An alternative identification strategy based on California’s SB 826 regulatory mandate yields consistent results. Our findings suggest that board gender diversity enhances governance in ways valued by credit markets.
  • 详情 The Green Value of BigTech Credit
    This study identifies an incentive-compatible mechanism to foster individual environmental engagement. Utilizing a dataset comprising 100,000 randomly selected users of Ant Forest—a prominent personal carbon accounting platform embedded within Alipay, China's leading BigTech super-app—we provide causal evidence that individuals strategically engage in eco-friendly behaviors to enhance their credit limits, particularly when approaching borrowing constraints. These behaviors not only illustrate the green nudging effect of BigTech but also generate value for the platform by leveraging individual green actions as soft information, thereby improving the efficiency of credit allocation. Using a structural model, we estimate an annual green value of 427.52 million US dollars generated by linking personal carbon accounting with BigTech credit. We also show that the incentive-based mechanism surpasses green mandates and subsidies in improving consumer welfare and overall societal welfare. Our findings highlight the role of an incentive-aligned approach, such as integrating personal carbon accounts into credit reporting frameworks, in addressing environmental challenges.
  • 详情 Unraveling the Impact of Social Media Curation Algorithms through Agent-based Simulation Approach: Insights from Stock Market Dynamics
    This paper investigates the impact of curation algorithms through the lens of stock market dynamics. By innovatively incorporating the dynamic interactions between social media platforms, investors, and stock markets, we construct the Social-Media-augmented Artificial Stock marKet (SMASK) model under the agent-based computational framework. Our findings reveal that curation algorithms, by promoting polarized and emotionally charged content, exacerbate behavioral biases among retail investors, leading to worsened stock market quality and investor wealth levels. Moreover, through our experiment on the debated topic of algorithmic regulation, we find limiting the intensity of these algorithms may reduce unnecessary trading behaviors, mitigates investor biases, and enhances overall market quality. This study provides new insights into the dual role of curation algorithms in both business ethics and public interest, offering a quantitative approach to understanding their broader social and economic impact.
  • 详情 Uncertainty and Market Efficiency: An Information Choice Perspective
    We develop an information choice model where information costs are sticky and co-move with firm-level intrinsic uncertainty as opposed to temporal variations in uncertainty. Incorporating analysts' forecasts, we predict a negative relationship between information costs and information acquisition, as proxied by the predictability of analysts' forecast biases. Finally, the model shows a contrasting pattern between information acquisition and intrinsic and temporal uncertainty, where intrinsic uncertainty strengthens return predictability of analysts' biases through the information cost channel, while temporal uncertainty weakens it through the information benefit channel. We empirically confirm these opposing relationships that existing theories struggle to explain.
  • 详情 Housing Price and Credit Environment: Evidence from China
    In this paper, we use a unique dataset of the List of Dishonest Judgment Debtors to explore the impact on the social credit environment of the increasing housing prices in China. We find that housing price has a negative impact on the local credit environment. Dominance analysis suggests that housing price contributes to the model R-squared (R2) by an overwhelming majority, suppressing any other economic or social factors in explaining the deteriorating credit environment. Heterogeneity analysis shows that the rule of law and moral standards mitigate the negative influence of high housing prices, while income inequality exacerbates the influence.
  • 详情 ESG Performance, Employee Income and Pay Gap: Evidence from Chinese Listed Companies
    Identifying and addressing the factors influencing the within-firm pay gaps has become a pressing issue amidst the widening global income inequality. This study investigates the impact of corporate ESG ratings on employee income and pay gaps using data from Chinese-listed companies between 2017 and 2021. The results suggest that ESG ratings significantly increase employee income. Further research indicates that ESG ratings exacerbate the within-firm pay gaps and income inequality due to the varying bargaining power among employees. This effect is particularly pronounced in non-state-owned and large-scale companies. This is also true for all kinds of companies in traditional and highly competitive industries. However, reducing agency costs and improving information transparency can help vulnerable employees with weaker bargaining power in income distribution to narrow their pay gaps. The research findings offer important insights to promote fair income distribution within companies and address global income inequality.
  • 详情 Environmental Regulations, Supply Chain Relationships, and Green Technological Innovation
    This paper examines the spillover effect of environmental regulations on firms’ green technological innovation, from the perspective of supply chain relationships. Analyzing data from Chinese listed companies, we find that the average environmental regulatory pressure faced by the client firms of a supplier firm enhances the green patent applications filed by the supplier firm, indicating that environmental regulatory pressure from clients spills over to suppliers. When the industries of suppliers are more competitive or the proportion of their sales from the largest client is higher, suppliers feel more pressured to engage in green innovation, resulting in more green patent applications. Thus, via their negotiation power, client firms can prompt supplier firms to innovate to meet their demand for green technologies. Finally, we show that this effect is particularly pronounced when supplier firms are located in highly marketized regions, receive low R&D government subsidies, or have high ESG ratings.