self-attention

  • 详情 Self-Attention Based Factor Models
    This study introduces a novel factor model based on self-attention mechanisms. This model effectively captures the non-linearity, heterogeneity, and interconnection between stocks inherent in cross-sectional pricing problems. The empirical results from the Chinese stock market reveal compelling ffndings, surpassing other benchmarks in terms of profftability and prediction accuracy measures, including average return, Sharpe ratio, and out-of-sample R2. Moreover, this model demonstrates both practical applicability and robustness. These results provide valuable evidence supporting the existence of the three aforementioned properties in crosssectional pricing problems from a theoretical standpoint, and this model offers a powerful tool for implementing profftable long-short strategies.
  • 详情 Attention Is All You Need: An Interpretable Transformer-based Asset Allocation Approach
    Deep learning technology is rapidly adopted in financial market settings. Using a large data set from the Chinese stock market, we propose a return-risk trade-off strategy via a new transformer model. The empirical findings show that these updates, such as the self-attention mechanism in technology, can improve the use of time-series information related to returns and volatility, increase predictability, and capture more economic gains than other nonlinear models, such as LSTM. Our model employs Shapley additive explanations (SHAP) to measure the “economic feature importance” and tabulates the different important features in the prediction process. Finally, we document several economic explanations for the TF model. This paper sheds light on the burgeoning field on asset allocation in the age of big data.