• 详情 创投双方匹配结构与风险投资退出表现
    现有文献主要聚焦于风投机构本身的静态同质化价值增值职能,围 绕风投机构的增值职能与风险投资退出表现展开了大量研究。本文提出风险投资 与创业企业之间的匹配结构对风险投资退出表现的影响机制问题。基于 Fu et al.(2018b)的研究模型,我们通过进一步的理论分析发现:创投双方匹配结构会 影响双方各自最优努力水平,造成风投机构价值增值职能的动态异质性,表现出 影响风投机构的退出表现;同时,采用实证模型研究发现:创投双方的匹配契合 度越高越有助于改善风投机构退出表现,创投双方的匹配差异度对风险投资提出 表现呈现倒 U 型关系特征,支撑了理论模型的研究结论。本文为探索风险投资 退出表现与创业企业发展成长的决定机制提供了一个崭新的研究视角,充实和扩 展风险投资对企业成长发挥增值职能的研究基础。
  • 详情 明星丑闻与股市异动
    本文选用事件分析法,对 2001 年至 2018 年的明星丑闻事件样本进行研究。发现 明星丑闻事件对其相关的代言公司、经纪公司和投资公司股票价格均产生显著的负面影响。 对于代言公司而言,明星代言的沪深市场、港台市场和海外上市的公司股票超额收益也均显 著为负。而且短期内明星代言公司的异常回报率与明星影响力显著负相关,而与事件性质(违 法或违反道德)以及事件关注度等并无显著的关系。长期来看,明星代言公司的异常回报率 与明星影响力和事件关注度显著正相关。对于明星投资公司而言,长期来看公司的异常回报 与明星影响力、事件关注度呈显著正相关。当事件为违法事件时,投资公司的股票负向收益 变化幅度更大。对于明星经纪公司而言,本文研究发现,公司的异常回报与明星影响力以及 事件关注度均无显著性关系。当明星丑闻曝光时,短期亲朋好友公司的累积异常回报与涉事 明星公司的累积异常回报呈现正相关关系。同时,丑闻曝光引发的股市波动会对公司产生实 质性层面的影响。当明星丑闻曝光时,累积异常回报下降越多的公司,其下一季度收入与净 利润下降越大。
  • 详情 西部人才引进、企业创新与经济增长
    本文以西部各地交错实施的高层次人才引进政策为背景,考察了制度因素对企 业创新的真实效应。结果表明,西部高层次人才引进政策可以显著提升企业创新投入和产出, 并有助于提高企业绩效和全要素生产率。异质性检验表明,在国有企业和竞争性企业中,高 层次人才引进政策对企业创新具有显著的促进作用。机制检验表明,西部企业中高级人才(研 发、技术人员和高学历人员)占员工总数的比重在政策实施后显著增加。这与本文基于知识 基础观的预测一致,即西部各地的高层次人才引进政策吸引了高级人才的流入,这种人力资 本的再分配使创新性知识向西部转移和溢出从而促进了企业创新。本文尝试打开了制度因素 影响企业创新的“黑箱”,为西部各级政府制定相应政策改善西部地区人力资本稀缺的现状, 促进西部整体创新水平和经济增长提供了参考。
  • 详情 基于CVaR的基金业绩测度研究
    基于条件在险价值(CVaR)建立新的基金业绩测度指标,该指标在理论上拓展了经典的夏普比率。在正态分布下,该指标是夏普比率的增函数,二者对于基金业绩排名是一致的;在非正态分布下,该指标克服夏普比率没考虑高阶矩、不满足随机占优单调性的缺陷,能给出更为合理的基金业绩排名。利用方差法、经验分布法和核估计法对新指标进行估计,蒙特卡洛模拟结果表明,方差法仅在正态分布下有效,在非正态分布下其估计结果存在系统性偏差;同属于非参数方法的经验分布法和核估计方法在任意分布下都具有大样本性质且估计精度相当。最后运用新指标对我国开放式基金的业绩进行测算和排名,结果显示:当各基金的偏度系数和峰度系数差异较小时,夏普比率和新指标给出的基金业绩排名基本一致;而当各基金的偏度系数和峰度系数差异较大时,二者给出的基金业绩排名差异较大,新指标因考虑了高阶矩信息给出的排名更为合理,这与理论预期是一致的
  • 详情 中国私募基金经理是否具有择时能力?
    本研究对中国股票型私募基金经理的市场择时能力进行了检验,即这些私募基金经理是否具有根据市场情况来调整基金资产组合的市场敞口的能力。相比与公募基金,私募基金的策略和资产组合的调整更加灵活,因此更有利于体现基金经理的择时能力。我们从收益择时、波动择时和流动择时三个维度来对中国的私募基金经理的择时能力进行检验。研究发现,私募基金经理具有一定的收益择时和流动择时能力,但是很少有基金经理具有波动择时能力。即一些私募基金经理可以通过预测市场收益和市场的流动性,来相应调整资产组合的市场敞口,但很少有基金经理可以通过预测市场波动来调整基金的市场风险敞口。同时,我们对回归结果进行了Bootstrap分析,结果表明这些显著的择时能力并不是由于运气因素所带来的。最后,我们也对结果进行了稳健性的检验。我们的研究对于了解中国私募基金经理的择时能力具有一定的帮助,同时,有助于加深理解市场的收益、波动性和流动性在资产管理和投资决策中的作用和重要性
  • 详情 How Smart is Smart Money? Evidence from Mutual Funds’ Exposure on Corporate Misconduct
    We examine how mutual funds’ trading and performance respond to corporate misconduct. We exploit a combined dataset of corporate misconduct and holding information of mutual funds and show that mutual funds tend to sell and buy more stocks of corporations with misconduct. Mutual funds with more misconduct exposure perform significantly worse than those with less misconduct exposure. Specifically, the top quintile portfolio of funds with the highest levels of misconduct exposure underperforms the bottom quintile by 1.57% to 1.97% on an annualized basis. Findings show that mutual funds undergo significant losses by investing in misconduct firms, which is more likely to be motivated by overconfidence than limited recognition.
  • 详情 Dancing with the Elephant: Do Government-launched Corporate Social Responsibility Activities Create Value?
    We investigate a prevalent yet overlooked form of corporate social responsibility (CSR) activities, i.e., government-launched CSR. Contrary to the conventional view that mandatory CSR destroys firm value, we document a positive market reaction to governmentlaunched CSR activities that aim to alleviate poverty. Analyses of operating performance and firm value confirm the positive impact. Further analyses suggest that while governmentlaunched CSR intervenes the operation of the firm by reducing the operating efficiency, firms enjoy higher operating margin, take more market share and save selling expense and labor cost by engaging their operations with the poverty-stricken areas. Participating firms are also rewarded more government subsidy. We further find that government-launched CSR activities achieve the stated objective of poverty relief. However, it also crowds out the firms' investment in other CSR activities. Overall, the evidence indicates that government-launched CSR has economy-wide implications than the traditional CSR.
  • 详情 Detecting Short-selling in US-listed Chinese Firms Using Ensemble Learning
    This paper uses ensemble learning to build a predictive model to analyze the short selling mechanism of short institutions. We demonstrate the value of combining domain knowledge and machine learning methods in financial market. On the basis of the benchmark model, we use three input data: stock price, financial data and textual data and we employ one of the most powerful machine learning methods, ensemble learning, rather than the commonly used method of logistic regression. In specific methods, we use LSTM-AdaBoost and CART-AdaBoost for model prediction. The results show that the model we train have strong prediction ability for short-selling and the company' s financial text data is more likely to have an impression of whether it would be shorted or not.
  • 详情 Dynamic Correlation and Spillover Effect between International Fossil Energy Markets and China's New Energy Market
    The existing literature mainly documents the relationship between international and domestic fossil energy markets; however, empirical evidence of the dynamic relationships between fossil energy market and new energy market is lacking. This paper combines TGARCH model and copula model to explore the dynamic linkages and spillover effects between international fossil energy (crude oil, coal and natural gas) markets and China's new energy market using daily data from 4 January 2012 to 3 September 2018. The empirical results indicate that fossil energy returns and new energy returns are positive related over time. And the crude oil returns and new energy returns, as well as the coal returns and new energy returns have lower tail dependence, while there is upper tail dependence structure between natural gas returns and new energy returns. Furthermore, the extreme upside and downside risk spillover from international fossil energy markets to China's new energy market is asymmetric. Among the spillover effects, the downward risk spillover of crude oil market exerts the most significant impact on China's new energy market.
  • 详情 绿色债券增进绿色技术创新研究
    发展绿色金融旨在促进企业生产方式低碳转型,尤其支持企业开展绿色创新。 本文以绿色债券为例,利用双重差分模型研究了绿色金融对企业绿色创新的支持效应。研究发现,发行绿色债券显著提升了企业绿色创新能力, 这主要体现在绿色发明专利和绿色实用新型专利两个方面, 其中发行绿色债券对绿色发明专利的促进作用具有更好的动态持续性。 异质性检验发现,国有企业、非重污染企业、 无第三方认证企业、专利密集型企业在发行绿色债券后绿色创新表现更加积极。 进一步分析发现, 发行绿色债券对企业绿色创新的促进作用源于资源效应和监督效应两个机制。 本文最直接的政策含义是,为企业实现环境保护与竞争力提升的“双赢”和加快发展绿色金融促进企业绿色创新进而更好地实现绿色经济发展提供了有益的理论借鉴。