所属栏目:资本市场/固定收益证券/2022/2022年第02期目录

Forecasting Bond Return with Real Time Macroeconomic Data: A Predictive Principal Component Approach
认领作者 认领作者管理权限
发布日期:2022年05月25日 上次修订日期:2022年05月25日

摘要

Ghysels, Horan, and Moench (2017) show that extracting principal component (PC) factors from real time as opposed to revised macro variables substantially reduces their power in forecasting bond excess returns. In this paper, we propose a predictive principal component (PPC) approach to extract factors from information pertaining to expected bond excess returns contained in real time macro variables. In so doing, the new PPC factors remove common noises in real time data and exhibit significant bond return predictability. The inand out-of-sample R2s improve by more than 50% relative to the PC factors. Moreover, the forecasted bond excess returns are countercyclical, consistent with standard asset pricing models.
展开

Dashan Huang; Fuwei Jiang; Guoshi Tong Forecasting Bond Return with Real Time Macroeconomic Data: A Predictive Principal Component Approach (2022年05月25日) https://www.cfrn.com.cn/dzqk/detail/13166

选择要认领的作者1
身份验证1
确认
取消