所属栏目:银行与金融机构/风险管理/2023/2023年第01期目录

中国商业银行系统性风险上升了吗?-基于集成机器学习技术的新证据
认领作者 认领作者管理权限
发布日期:2023年01月20日 上次修订日期:2023年01月20日

摘要

保持金融稳定是目前中央“六个稳定”政策中的重中之重,系统性金融风险关乎经济发展。本文手工整理了 2010 年~2017 年非上市银行数据,利用集成机器学习(Ensemble ML) 技术测算中国 5 家国有商业银行、12 家股份制商业银行及 103 家城市商业银行的系统性风险,弥补了V-Lab 仅包含部分上市银行的缺陷。发现:总体系统性风险不断上升,各年度平均有 25%以上的急速增长,2016 年底出台的一系列政策有效控制了这一上升趋势,2017 年显著下降 10.3%;SRISK 份额最高的 5 大国有商业银行仅占 54.78%,城市商业银行的系统性风险份额不断上升、已成为中国系统性风险的潜在累积点;区域性演进上呈现向东南沿海积聚的特点。控制区域性发展的回归模型进一步揭示了商业银行系统性风险出现和上升的影响机制:总资产有显著的正向影响,支持“大而不能倒”的观点;杠杆率和期限错配是重要影响因素,银行的杠杆率降低 1%,系统性风险上升的概率显著下降 0.2%,系统性风险出现的概率下降 0.84%,上一年度出现风险的银行该年系统性风险上升的概率下降 0.5%,支持了“降杠杆”政策,且对非系统重要性银行降杠杆的效果更显著;提高流动性有利于显著降低系统性风险,但调控效果没有降杠杆强。最后利用国家层面和省际层面累计的系统性风险,发现金融风险对经济增长的确存在显著影响。
展开

张小茜; 唐梦泽 中国商业银行系统性风险上升了吗?-基于集成机器学习技术的新证据 (2023年01月20日) https://www.cfrn.com.cn/dzqk/detail/15233.html

选择要认领的作者1
身份验证1
确认
取消