information

  • 详情 Conversion to Green Energy in China: Perspectives and Environmental Law
    This study was conducted to understand better how rules influence China's energy performance; this research on these policies' efficacy that facilitating the transition to sustainable energy sources is of tremendous significance, particularly in light of the severe problems climate change poses. To determine whether or not strict regulations are beneficial to China's energy transition efforts, this research makes use of a substantial amount of data about China's environmental laws and environmental transition policies. This paper thoroughly analyses the impact of strict environmental regulations on various energy transition measures. These metrics include the availability of green energy, carbon emissions, and energy efficiency. The results provide insights into how environmental restrictions have affected China's transition to a different energy source. Policymakers and stakeholders may use this information to build efficient plans to expedite the transition to a low-carbon, renewable energy system in China and abroad.
  • 详情 Adverse Selection of China's Automobile Insurance Market on the Iot
    Adverse selection remains a significant challenge in the insurance industry, often resulting in substantial financial losses for insurers. The primary hurdle in addressing the issue lies in accurately identifying and quantifying adverse selection. Traditional methods often fail to adequately account for the heterogeneity of insurance purchasers and the endogenous nature of their insurance decisions. This study introduces an innovative approach that integrates the Gaussian Mixture Model and the regression-based model from Dionne et al. (2001) to assess adverse selection, addressing the limitations of previous methods. Through comprehensive simulations, we demonstrate that our method yields unbiased estimates, outperforming existing approaches. Applied to China’s automobile insurance market, leveraging IoT devices to track telematics data, this method captures risk heterogeneity among the insured. The results offer robust evidence of adverse selection, in contrast to conventional methods that fail to detect this phenomenon due to their inability to capture the underlying relationship between customer risk and claim behavior. Our approach offers insurers a robust framework for identifying information asymmetries in the market, thereby enabling the development of more targeted policy interventions and risk management strategies.
  • 详情 Tail risk contagion across Belt and Road Initiative stock networks: Result from conditional higher co-moments approach
    We study tail-risk contagion in Belt and Road (BRI) stock markets by conditioning on shocks from China and global commodities. We construct time-varying contagion indices from conditional higher co-moments (CoHCM) estimated within a DCC-GARCH model with generalized hyperbolic innovations, and apply them to daily data for 32 BRI markets. The higher-moment index isolates two channels: a China-driven financial-institutional channel and a WTI-driven commodity-real-economy channel, whereas a covariance benchmark fails to recover this separation. Furthermore, the system-GMM estimates link the China-conditional channel to institutional quality and financial depth, and the WTI-conditional channel to real activity. In out-of-sample portfolio tests, the WTI-conditional signal improves risk-adjusted performance relative to equally weighted and mean-variance benchmarks, while the China-conditional signal does not. Tail-based measurement thus sharpens identification of contagion paths and yields information that is economically relevant for risk management in interconnected emerging markets.
  • 详情 Adverse Selection and Overnight Returns: Information-Based Pricing Distortions Under China’s "T+1" Trading
    Contrary to the US, Chinese stock markets exhibit negative overnight returns that appear to be highly affected by the extent of information asymmetry. China's "T+1" trading rule, which prohibits same-day selling, exacerbates adverse selection for uninformed buyers by limiting them to react to post-trade information. An information asymmetry-driven price discount thus emerges at market open, generating negative overnight returns, which further decrease with information asymmetry. Consistent with adverse selection, empirical evidence reveals lower overnight returns during market declines and high-volatility periods, with robust negative relationship between overnight returns and information asymmetry proxied by firm size, analyst coverage, and earnings announcement proximity. A model is introduced to rationalize our findings. This framework also sheds light on China's "opening return puzzle", the phenomenon that prices rise rapidly in the initial 30 minutes of trading, by showing how reduced adverse selection enables rapid price recovery during opening session.
  • 详情 What Can Issuers Benefit from Green Bond Issuances?
    We examine the effects of issuing green bond on green premium and green signal transmission by matching green bonds with ordinary bonds. We find that the credit spread of green bonds is significantly lower than that of ordinary bonds, especially for those green bonds with lower information disclosure complexity. Besides, issuing green bonds cannot receive a positive response from the stock market, but can significantly reduce issuer’s loan costs and provide more financial subsidies for high polluting issuers. Furthermore, by obtaining discounted loans and financial subsidies, issuing green bonds can increase issuer’s R&D intensity and reduce their carbon emissions. These findings indicate that issuing green bonds can reduce financing costs and convey green signals to market stakeholders with less investment experience.
  • 详情 The Demand, Supply, and Market Responses of Corporate ESG Actions: Evidence from a Nationwide Experiment in China
    We conducted a nationwide field experiment with 4,800+ Chinese-listed companies, randomly raising ESG concerns to their management teams via high-visibility and high-stakes online platforms. Tracking the full impact-generating process, we find that companies respond to our concerns by providing high-quality answers, publishing ESG reports, and making commitments to investors. Over time, Environmental (E) inquiries boost stock valuations, while Governance (G) concerns prompt skepticism. Productive and opaque firms are more likely to respond, consistent with a signaling model where costly ESG actions signal firm quality under information asymmetry. Overall, ESG actions are likely driven by profit-oriented signaling rather than values-based motives.
  • 详情 ESG Rating Disagreement and Price Informativeness with Heterogeneous Valuations
    In this paper, we present a rational expectation equilibrium model in which fundamental and ESG traders hold heterogeneous valuations towards the risky asset. Trading occurs based on private information and price signal which is determined by a weighted combination of these diverse valuations. Our findings indicate that higher level of ESG rating disagreement increases ESG information uncertainty, thereby reducing trading intensity among ESG traders and attenuating the price informativeness about ESG. We further discover that allowing fundamental traders access to ESG information increases the coordination possibilities in the financial market, leading to multiple equilibria exhibiting characteristics of strategic substitutability and complementarity. Additionally, through measuring the ESG rating disparities among four prominent agencies in China, we deduce that ESG rating disagreement negatively impacts price informativeness by decreasing stock illiquidity.
  • 详情 Positive Press, Greener Progress: The Role of ESG Media Reputation in Corporate Energy Innovation
    The growing emphasis on Environmental, Social, and Governance (ESG) principles, particularly in corporate sectors, shapes investment trends and operational strategies, whose shift is supported by the increasing role of media in monitoring and influencing corporate ESG performance, thereby driving the energy innovation. Therefore, based on reported events from Baidu News and patent text information of Chinese A-share listed companies from 2012 to 2022, this study innovatively applied machine learning and text analysis to measure ESG news sentiment and corporate energy innovation indicators. Combing with reputation, stakeholder, and agency theories, we find that a good reputation conveyed by positive ESG textual sentiments in the media significantly promotes corporate energy innovation, and the effect is mainly realized through alleviating financing constraints and agency problems and promoting green investment. Further analysis shows that ESG news sentiment promotes corporate energy innovation mainly among private firms, non-growth-stage firms, high-energy-consuming firms, and regions with better green finance development and higher ESG governance intensity. From the perspective of ESG news content and information content, greater ESG news attention can also exert an energy innovation incentive effect, in which the incentive effect exerted by positive media sentiment in the environmental (E) and social (S) dimensions, as well as excellent attention, is more robust. This study provides new insights for promoting green and low-carbon development and understanding the external governance role of media in corporate ESG development.
  • 详情 Tracing the Green Footprint: The Evolution of Corporate Environmental Disclosure Through Deep Learning Models
    Environmental disclosure in emerging markets remains poorly understood, despite its critical role in sustainability governance. Here, we analyze 42,129 firm-year environmental disclosures from 4,571 Chinese listed firms (2008-2022) using machine learning techniques to characterize disclosure patterns and regulatory responses. We show that increased disclosure volume primarily comprises boilerplate content rather than material information. Cross-sectional analyses reveal systematic variations across industries, with manufacturing and high-pollution sectors exhibiting more comprehensive disclosures than consumer and technology sectors. Notably, regional rankings in environmental disclosure volume do not align with local economic development levels. Through examination of staggered regulatory implementation, we demonstrate that market-based mechanisms generate more substantive disclosures compared to command-and-control approaches. These results provide empirical evidence that firms strategically manage environmental disclosures in response to institutional pressures. Our findings have important implications for regulatory design in emerging markets and advance understanding of voluntary disclosure mechanisms in sustainability governance.
  • 详情 The impact of ESG performances on analyst report readability: Evidence from China
    It has been widely recognized that firms’ environmental, social, and governance (ESG) performances are crucial for shaping their information environments. Nonetheless, the impact of ESG performances on important analyst report attributes still remains clear. Our study reveals that superior firm. ESG performances significantly enhance the analyst report readability. The mechanism analysis demonstrates that this effect is primarily driven by increased information accessibility (the information acquisition channel) and greater analysts’ research efforts (the analyst effort channel). As expected, this effect is more pronounced in firms operating in highly polluted industries, firms with opaque financial infomration and state-owned enterprises (SOEs). Finally, our findings reveal that the release of analyst reports triggers higher market reactions for firms with superior ESG performances. In overall, our study highlights the criticial role of firm ESG performances in boosting financial analysts’ information production process.