stock

  • 详情 Optimizing Market Anomalies in China
    We examine the risk-return trade-off in market anomalies within the A-share market, showing that even decaying anomalies may proxy for latent risk factors. To balance forecast bias and variance, we integrate the 1/N and mean-variance frameworks, minimizing out-of-sample forecast error. Treating anomalies as tradable assets, we construct optimized long-short portfolios with strong performance: an average annualized Sharpe ratio of 1.56 and a certainty-equivalent return of 29.4% for a meanvariance investor. These premiums persist post-publication and are largely driven by liquidity risk exposures. Our results remain robust to market frictions, including shortsale constraints and transaction costs. We conclude that even decaying market anomalies may reflect priced risk premia rather than mere mispricing. This research provides practical guidance for academics and investors in return predictability and asset allocation, especially in the unique context of the Chinese A-share market.
  • 详情 Peer Md&A Risk Disclosure and Analysts’ Earnings Forecast Accuracy: Evidence from China
    In this study, we investigate whether and how risk disclosure in peer firms’ management discussion and analysis (MD&A) influences analyst earnings forecast accuracy. We find that peer MD&A risk disclosure significantly improves forecast accuracy, demonstrating a positive spillover effect. Moreover, the impact of peer MD&A risk disclosure on analysts’ forecast accuracy strengthens with the comparability and reliability of peer firms’ information, while weakens with the disclosure quality of the focal firm. Finally, peer MD&A risk disclosure also reduces stock price crash risk, providing further evidence that it improves information environment of the focal firm.
  • 详情 Beyond Financial Statements: Does Operational Information Disclosure Mitigate Crash Risk?
    Previous studies on the impact of corporate information disclosure on stock price crash risk have largely focused on financial statements. In contrast, China’s unique monthly operating report disclosure system—featuring high frequency and realtime operational data—offers a distinct information channel. Using data from A-share listed firms from 2010 to 2021, we find that monthly operating report disclosures significantly reduce stock price crash risk by alleviating information asymmetry between firms and external stakeholders. The underlying mechanisms involve restraining managerial opportunism and correcting investor expectation biases. Further analysis shows that firms’ official responses to investor inquiries has no significant effect on crash risk once monthly operational disclosures are accounted for, underscoring that the quality of information disclosed is as important as its frequency. The risk-reducing effect is more pronounced among firms with greater business complexity, weaker internal controls, and lower institutional ownership.
  • 详情 The Local Influence of Fund Management Company Shareholders on Fund Investment Decisions and Performance
    This paper investigates how the geographical distribution of shareholders in Chinese mutual fund management companies influences investment decisions. We show that mutual funds are more inclined to hold and overweight stocks from regions where their shareholders are located, thus capitalizing on a local information advantage. By examining changes in fund holdings in response to shifts in the shareholder base, we rule out the possibility that these effects are driven by fund managers’ local biases. Our findings reveal that stocks from the same region as the fund’s shareholders tend to outperform and significantly contribute to the fund’s overall performance.
  • 详情 Intensity of Intraday Reversals and Future Stock Returns: The Role of Retail Investors
    We investigate the relationship between the intensity of intraday return reversals and future stock returns in the Chinese stock market. We find that a high frequency of positive overnight returns followed by negative daytime returns predicts one-month ahead returns positively. The analysis shows that daytime retail investors tend to overly sell their own rising stocks at market open, accepting lower stock prices in exchange for liquidity. As the price pressure attenuates, these stocks experience subsequent price increases, implying a positive relationship between return reversals and future returns.
  • 详情 A multifactor model using large language models and investor sentiment from photos and news: new evidence from China
    This study introduces an innovative approach for constructing multimodal investor sentiment indices and explores their varying impacts on stock market returns. We employ the RoBERTa model to quantify text-based sentiment, the Google Inception(v3) model for image-based sentiment measurement, and a multimodal semantic correlation fusion model to comprehensively consider the interplay between textual and visual sentiment features. These sentiment indices are further categorised into industry-specific investor sentiment and market-wide investor sentiment, enabling separate analyses of their effects on stock markets. Furthermore, we leverage these indices to build a multifactor stock selection model and timing strategies. Our research findings demonstrate that multimodal sentiment analysis yields superior predictive accuracy. Industry-specific investor sentiment exerts bidirectional positive influences on stock market returns, whereas market-wide investor sentiment indices exhibit unidirectional impacts. Integrating industry-specific investor sentiment into our multifactor stock selection model effectively enhances portfolio returns. Furthermore, combining market-wide investor sentiment with timing strategy optimisation further augments this advantage.
  • 详情 Does Uncertainty Matter in Stock Liquidity? Evidence from the Covid-19 Pandemic
    This paper utilizes the COVID-19 pandemic as an exogenous shock to investor uncertainty and examines the effect of uncertainty on stock liquidity. Analyzing data from Chinese listed firms, we find that stock liquidity dries up significantly in response to an increase in uncertainty resulting from regional pandemic exposure. The underlying reason for the decline in stock liquidity during the pandemic is a combination of earnings and information uncertainty. Funding constraints, market panic, risk aversion, inattention rationales, and macroeconomics factors are considered in our study. Our findings corroborate the substantial impact of uncertainty on market efficiency, and also add to the discussions on the pandemic effect on financial markets.
  • 详情 Network Centrality and Market Information Efficiency: Evidence from Corporate Site Visits in China
    Utilizing a unique data set of corporate site visits to Chinese capital market from 2013 to 2022, this study provides new evidence on the economic benefits brought by corporate site visits from a social network perspective. Specifically, we examine that whether information transmission through network of corporate site visits. Our results show that network centrality is positively associated with market information efficiency. This positive effect is robust and remains valid after a battery of robustness checks and endogeneity analyses, which verify the existence of information interaction in the network of corporate site visits. Furthermore, we find evidence that network of company visits positively influence market information efficiency through lowering information asymmetry between investors and listed firms rather than the “irrational factor” mechanism. In brief, our paper contributes to the existing research by presenting evidence that corporate site visits are significant venues for investors to gain and exchange information about listed companies.
  • 详情 Institutional Investor Cliques and Corporate Innovation: Evidence from China
    This study analyzes the network structures of institutional shareholders and examines the influence of institutional investor cliques on corporate innovation. Our empirical results reveal that institutional investor cliques significantly enhance both innovation input and output. To mitigate endogeneity concerns and establish causality, we adopt multiple empirical strategies. Further evidence suggests that the beneficial impact of institutional investor cliques on firm innovation can be attributed to increased innovation investment efficiency, enhanced employee productivity, reduced information asymmetry, and decreased managerial myopia. Additionally, we find that the positive effect of institutional investor cliques on firm innovation is more pronounced in non-state-owned enterprises and is particularly evident in firms with severe agency conflicts, CEO duality issues, highly competitive product markets, and for firms that have low stock liquidity.
  • 详情 State Ownership and Firm R&D Performance: Capability or Objective?
    We empirically investigate the impact of state ownership on the private economic value and the scientific value of Chinese publicly listed firms’ innovation from 2003 to 2020, and explore its mechanism. We show that the stock-market-based methodology of estimating patent value proposed by Kogan et al. (2017) applies to the Chinese economy, and follow their approach to evaluate patents issued to Chinese listed firms. Using this new data and patent citation data, we find that state-owned enterprises have lower private value of innovation than non-state-owned enterprises, while their scientific values of innovation are not significantly different. We also provide evidence that the state-owned enterprises’ low profit-oriented R&D performance is due to their insufficient capabilities rather than ownership-specific corporate objectives.