stock

  • 详情 Does Radical Green Innovation Mitigate Stock Price Crash Risk? Evidence from China
    Between high-quality and high-efficiency green innovation, which can truly reduce stock price crash risk? We use data from Chinese listed companies from 2010 to 2022 to study the impact mechanism and effect of radical and incremental green innovation stock price crash risk. Results show that radical green innovation can significantly reduce stock price crash risk, and this effect is more evident than the incremental one. Radical green innovation can improve information efficiency and enhance risk management, thus reducing stock price crash risk. Besides, among companies held by trading institutions and with low analyst coverage, the inhibitory effect is more evident.
  • 详情 Time-Varying Arbitrage Risk and Conditional Asymmetries in Liquidity Risk Pricing: A Behavioral Perspective
    This study investigates the link between market arbitrage risk and liquidity risk pricing in a conditional asset pricing framework. We estimate comparative models both at the portfolio and firm level in the Chinese A- and B-shares to test behavioral hypotheses with respect to foreign ownership restrictions and market segmentation. Results show that conditional liquidity premium and risk betas exhibit pronounced asymmetry across share classes which could be attributed to differentiated levels of market mispricing. Specifically, stocks with a greater degree of information asymmetry and retail ownership are more sensitive to liquidity risks when the market arbitrage risk increase. Further policy impact analysis shows that China’s market liberalization efforts, contingent upon its recent stock connect programs, conditionally reduce the price of liquidity risk for connected stocks.
  • 详情 Spatiotemporal Correlation in Stock Liquidity Through Corporate Networks from Information Disclosure Texts
    The healthy operation of the stock market relies on sound liquidity. We utilize the semantic information from disclosure texts of listed companies on the China Science and Technology Innovation Board (STAR Market) to construct a daily corporate network. Through empirical tests and performance analyses of machine learning models, we elucidate the relationship between the similarity of company disclosure text contents and the temporal and spatial correlations of stock liquidity. Our liquidity indicators encompass trading costs, market depth, trading speed, and price impact, recognized across four dimensions. Furthermore, we reveal that the information loss caused by employing Minimum Spanning Tree (MST) topology significantly affects the explanatory power of network topology indicators for stock liquidity, with a more pronounced impact observed at the document level. Subsequently, by establishing a neural network model to predict next-day liquidity indicators, we demonstrate the temporal relationship of stock liquidity. We model a liquidity predicting task and train a daily liquidity prediction model incorporating Graph Convolutional Network (GCN) modules to solve it. Compared to models with the same parameter structure containing only fully connected layers, the GCN prediction model, which leverages company network structure information, exhibits stronger performance and faster convergence. We provide new insights for research on company disclosure and capital market liquidity.
  • 详情 ESG Rating Divergence and Stock Price Delays: Evidence from China
    This paper examines the impact of ESG rating divergence on stock price delays in the context of the Chinese capital market. We find that ESG rating divergence significantly increases the stock price delays. Mechanism analysis results suggest that ESG rating divergence affects stock price delays by reducing information transparency and firm internal control quality. Heterogeneous analysis results indicate that the impact of ESG rating divergence on stock price delays is more pronounced in high-tech firms and when investor sentiment is high.
  • 详情 The effect of third-party certification for green bonds: Evidence from China
    We investigate the effect of third-party certification for green bonds by analyzing its impact on issuer's future green innovation performances. We find that third-party certification for green bonds can significantly promote issuer's future green innovation performances. Furthermore, the promotion effect is more prominent in non-state-owned issuers, large issuers and heavy polluting issuers, and can be more significantly exerted by professional and reputable third-party certification agencies. Besides, third-party certification for green bonds can play the effect by reducing the issuer's tax expenditure, increasing the issuer's loan financing, and receiving a positive response in stock returns. But unexpectedly, it cannot play the effect by further reducing the credit spread of green bonds. Our findings indicate that independent external supervision can play a positive role in green bond issuance, but there is still a long way to go.
  • 详情 Predicting Stock Price Crash Risk in China: A Modified Graph Wavenet Model
    The stock price of a firm is dynamically influenced by its own factors as well as those of its peers. In this study, we introduce a Graph Attention Network (GAT) integrated with WaveNet architecture—termed the GAT-WaveNet model—to capture both time-series and spatial dependencies for forecasting the stock price crash risk of Chinese listed firms from 2012 to 2021. Utilizing node-rolling techniques to prevent overfitting, our results show that the GAT-WaveNet model significantly outperforms traditional machine learning models in prediction accuracy. Moreover, investment portfolios leveraging the GAT-WaveNet model substantially exceed the cumulative returns of those based on other models.
  • 详情 Large Language Models and Return Prediction in China
    We examine whether large language models (LLMs) can extract contextualized representation of Chinese news articles and predict stock returns. The LLMs we examine include BERT, RoBERTa, FinBERT, Baichuan, ChatGLM and their ensemble model. We find that tones and return forecasts extracted by LLMs from news significantly predict future returns. The equal- and value-weighted long minus short portfolios yield annualized returns of 90% and 69% on average for the ensemble model. Given that these news articles are public information, the predictive power lasts about two days. More interestingly, the signals extracted by LLMs contain information about firm fundamentals, and can predict the aggressiveness of future trades. The predictive power is noticeably stronger for firms with less efficient information environment, such as firms with lower market cap, shorting volume, institutional and state ownership. These results suggest that LLMs are helpful in capturing under-processed information in public news, for firms with less efficient information environment, and thus contribute to overall market efficiency.
  • 详情 ESG news and firm value: Evidence from China’s automation of pollution monitoring
    We study how financial markets integrate news about pollution abatement costs into firm values. Using China’s automation of pollution monitoring, we find that firms with factories in bad-news cities---cities that used to report much lower pollution than the automated reading---see significant declines in stock prices. This is consistent with the view that investors expect firms in high-pollution cities to pay significant adjustment and abatement costs to become “greener.” However, the efficiency with which such information is incorporated into prices varies widely---while the market reaction is quick in the Hong Kong stock market, it is considerably delayed in the mainland ones, resulting in a drift. The equity markets expect most of these abatement costs to be paid by private firms and not by state-owned enterprises, and by brown firms and not by green firms.
  • 详情 Different Opinion or Information Asymmetry: Machine-Based Measure and Consequences
    We leverage machine learning to introduce belief dispersion measures to distinguish different opinion (DO) and information asymmetry (IA). Our measures align with the human-based measure and relate to economic outcomes in a manner consistent with theoretical prediction: DO positively relates to trading volume and negatively linked to bid-ask spread, whereas IA shows the opposite effects. Moreover, IA negatively predicts the cross-section of stock returns, while DO positively predicts returns for underpriced stocks and negatively for overpriced ones. Our findings reconcile conflicting disagree-return relations in the literature and are consistent with Atmaz and Basak (2018)’s model. We also show that the return predictability of DO and IA stems from their unique economic rationales, underscoring that components of disagreement can influence market equilibrium via distinct mechanisms.
  • 详情 Extrapolative expectations and asset returns: Evidence from Chinese mutual funds
    We examine how mutual funds form stock market expectations and the implications of these beliefs for asset returns, using a novel text-based measure extracted from Chinese fund reports. Funds extrapolate from recent stock market and fund returns when forming expectations, with more recent returns receiving greater weight. This recency tendency is weaker among more experienced managers. At the aggregate level, consensus expectations positively predict short-term future market returns, both in and out of sample. At the fund level, expectations are positively related to subsequent fund performance in the time series. In the cross-section, however, superior performance arises only when funds accurately forecast market direction and adjust their portfolios accordingly. This effect is stronger for optimistic forecasts and among funds with greater exposure to liquid stocks. Our findings highlight the conditional nature of belief-driven performance, shaped jointly by forecasting skill and the ability to implement views in the presence of execution frictions such as short-selling and liquidity constraints.