stock

  • 详情 Capital market liberalization and corporate debt maturity structure: evidence from the Shanghai-Shenzhen-Hong Kong Stock connect
    Purpose – This paper takes the Shanghai-Shenzhen-Hong Kong Stock Connect as a quasi-natural experimentand investigates the impact of capital market liberalization on the corporate debt maturity structure. It also aimsto provide some policy implications for corporate debt financing and further liberalization of the capital marketin China. Design/methodology/approach – Employing the exogenous event of Shanghai-Shenzhen-Hong Kong StockConnect and using the data of Chinese A-share firms from 2010 to 2020, this study constructs a difference-in-differences model to examine the relationship between capital market liberalization and corporate debt maturitystructure. To validate the results, this study performed several robustness tests, including the parallel test, theplacebo test, the Heckman two-stage regression and the propensity score matching. Findings – This paper finds that capital market liberalization has significantly increased the proportion of long-term debt of target firms. Further analyses suggest that the impact of capital market liberalization on thedebt maturity structure is more pronounced for firms with lower management ownership and non-Big 4 audit.Channel tests show that capital market liberalization improves firms’ information environment and curbsself-interested management behavior. Originality/value – This research provides empirical evidence for the consequences of capital marketliberalization and enriches the literature on the determinants of corporate debt maturity structure. Further thisstudy makes a reference for regulators and financial institutions to improve corporate financing through thegovernance role of capital market liberalization.
  • 详情 Systematic Information Asymmetry and Equity Costs of Capital
    We examine the pricing ofsystematic information asymmetry, induced by Chinese gov-ernment intervention, in the cross-section of stock returns. Using market-wide order im-balance as a proxy for systematic information, we observe a strong correlation betweenthe standard deviation of market-wide order imbalance and economic policy uncertainty.Furthermore, we find a significant positive relationship between the sensitivity of stocks tosystematic information asymmetry (OIBeta) and their future returns. The average monthlyreturn spread between high- and low-OIBeta portfolios ranges from 1.30% to 1.77%, andthis result remains robust after controlling for traditional risk factors. Our results providesubstantial evidence that the pricing of OIBeta is driven by systematic information asym-metry rather than alternative explanatory channels.
  • 详情 Do Chinese Retail and Institutional Investors Trade on Anomalies?
    Using comprehensive account-level data and 192 asset pricing anomaly signals, we investigate whether retail investors and institutions trade on anomalies in China. We find that retail investors tend to trade contrary to anomaly prescriptions, suggesting that they have a strong tendency to buy (sell) overvalued (undervalued) stocks. In contrast, institutions trade consistent with anomalies, indicating that they buy (sell) undervalued (overvalued) stocks. Regarding the information content of anomalies, we find that small retail investors trade contrary to trading-based anomalies, whereas institutions trade consistent with both trading- and accounting-based anomalies. Additionally, lottery stock preference and return extrapolation help explain investors’ trading behavior on anomalies.
  • 详情 Pricing Liquidity Under Preference Uncertainty: The Role of Heterogeneously Informed Traders
    This study highlights asymmetries in liquidity risk pricing from the perspective of heterogeneously informed traders facing changing levels of preference uncertainty. We hypothesize that higher illiquidity premium and liquidity risk betas may arise simultaneously in circumstances where investors are asymmetrically informed about their trading counterparts’ preferences and their financial firms’ timely valuations of assets . We first test the time-varying state transition patterns of IML, a traded liquidity factor of the return premium on illiquid-minus-liquid stocks, using a Markov regime-switching framework. We then investigate how the conditional price of the systematic risk of the IML fluctuate over time subject to changing levels of preference uncertainty. Empirical results from the Chinese stock market support our hypotheses that investors’ sensitivity to the IML systematic risk conditionally increase in times of higher preference uncertainty as proxied by the stock turnover and order imbalance. Further policy impact analyses suggest that China’s market liberalization efforts, contingent upon its recent stock connect and margin trading programs, reduce the conditional price of liquidity risk for affected stocks by helping the incorporation of information into stock prices more efficiently. Tighter macroeconomic funding conditions, on the contrary, conditionally increase the price of liquidity that investors require.
  • 详情 Hedge Funds Network and Stock Price Crash Risk
    Utilizing a dataset from 2013 to 2022 on China’s listed companies, we explored whether a hedge fund network could help explain the occurrence of Chinese stock crash. First, this study constructs a hedge fund network based on common holdings. Then, from the perspective of network centrality, we examine the effect of hedge fund network on stock crash risk and its mechanism. Our findings show that companies with greater network centrality experience lower stock crash risk. Such results remain valid after alternating measures, using the propensity score matching method, and excluding other network effects. We further document that the centrality of hedge fund network reduces crash risk through three channels: information asymmetry, stock price information content and information delay. In addition, the negative effect of hedge fund network centrality on crash risk is more prominent for non-SOEs firms. In summary, our research shed light on the important role of hedge fund information network in curbing stock crash.
  • 详情 ESG and Stock Price Volatility Risk: Evidence from Chinese A-Share Market
    This paper investigates whether Environmental, Social, and Governance (ESG) performance influences the stock idiosyncratic risk and extreme risk. We find that the ESG performance of listed companies significantly reduces the stock idiosyncratic risk and extreme risk. Furthermore, we identify that this mitigating effect is shaped by the nature of enterprise ownership and the firm life cycle. Through additional mechanistic analysis, we confirm that ESG performance affects the stock price volatility risk of listed companies by reducing levels of corporate earnings management and bolstering corporate reputation, thereby alleviating both idiosyncratic risk and extreme risk in stock prices.
  • 详情 Belief Dispersion in the Chinese Stock Market and Fund Flows
    This study explores how Chinese mutual fund managers’ degrees of disagreement (DOD) on stock market returns affect investor capital allocation decisions using a novel text-based measure of expectations in fund disclosures. In the time series, the DOD neg-atively predicts market returns. Cross-sectional results show that investors correctly perceive the DOD as an overpricing signal and discount fund performance accordingly. Flow-performance sensitivity (FPS) is diminished during high dispersion periods. The ef-fect is stronger for outperforming funds and funds with substantial investments in bubble and high-beta stocks, but weaker for skilled funds. We also discuss ffnancial sophisti-cation of investors and provide evidence that our results are not contingent upon such sophistication.
  • 详情 Factor Timing in the Chinese Stock Market
    I conduct an exploratory study about the feasibility of factor timing in the Chinese stock market, covering 24 representative and well-identiffed risk factors in ten categories from the literature. The long-short portfolio of short-term reversal exhibits strong and statistically signiffcant out-of-sample predictability, which is robust across various models and all types of predictors. However, such results are not evident in the prediction of all other factors’ long-short portfolios, as well as all factors’ long-wing and short-wing portfolios. The high exposure to the market beta, together with the unpredictability of the market return, explains these failures to some degree. On the other hand, a simple investment strategy based on predicted returns of the reversal factor’s long-short portfolio obtains a signiffcant return three times higher than the simple buy-and-hold strategy in the sample period, with a signiffcant annualized 20.4% CH-3 alpha.
  • 详情 Duration-driven Carbon Premium
    This paper reconciles the debates on carbon return estimation by introducing the concept of equity duration. Our findings reveal that equity duration effectively captures the multifaceted effects of carbon transition risks. Regardless of whether carbon transition risks are measured by emission level or emission intensity, brown firms earn lower returns than green firms when the equity duration is long due to discount rate channel. This relationship reverses for short-duration firms conditional on the near-term cash flow. Our analysis underscores the pivotal role of carbon transitions' multifaceted effects on cash flow structures in understanding the pricing of carbon emissions.
  • 详情 Unraveling the Impact of Social Media Curation Algorithms through Agent-based Simulation Approach: Insights from Stock Market Dynamics
    This paper investigates the impact of curation algorithms through the lens of stock market dynamics. By innovatively incorporating the dynamic interactions between social media platforms, investors, and stock markets, we construct the Social-Media-augmented Artificial Stock marKet (SMASK) model under the agent-based computational framework. Our findings reveal that curation algorithms, by promoting polarized and emotionally charged content, exacerbate behavioral biases among retail investors, leading to worsened stock market quality and investor wealth levels. Moreover, through our experiment on the debated topic of algorithmic regulation, we find limiting the intensity of these algorithms may reduce unnecessary trading behaviors, mitigates investor biases, and enhances overall market quality. This study provides new insights into the dual role of curation algorithms in both business ethics and public interest, offering a quantitative approach to understanding their broader social and economic impact.