volatility components

  • 详情 Forecasting Stock Market Volatility with Realized Volatility, Volatility Components and Jump Dynamics
    This paper proposes the two-component realized EGARCH model with dynamic jump intensity (hereafter REGARCH-C-DJI model) to model and forecast stock market volatility. The key feature of our REGARCH-C-DJI model is its ability to exploit the high-frequency information as well as to capture the long memory volatility and jump dynamics. An empirical application to Shanghai Stock Exchange Composite (SSEC) index data shows the presence of high persistence of volatility and dynamic jumps in China’s stock market. More importantly, the REGARCH-C-DJI model dominates the GARCH, EGARCH, REGARCH and REGARCH-C models in terms of out-of-sample forecast performance. Our findings highlight the importance of accommodating the realized volatility, volatility components and jump dynamics in forecasting stock market volatility.
  • 详情 Financial Uncertainty and Stock Market Volatility
    This study explores the relation between financial uncertainty and volatility in China. The time variation in financial uncertainty shocks is theoretically closely related to stock return dynamics. Empirically, the financial uncertainty measure is based on a large set of economic and financial variables and captures its unpredictable component. Over the sample period from 2000 to 2021, we find that financial uncertainty positively impacts the trend component of market volatility and that it improves volatility predictions in both statistical and economic terms. Our study sheds new light on the sources driving volatility and the dynamic relation between uncertainty and volatility components.
  • 详情 Intraday Dynamics of Volatility and Duration: Evidence from Chinese Stocks
    We propose a new joint model of intraday returns and durations to study the dynamics of several Chinese stocks. We include IBM from the U.S. market for comparison purposes. Flexible innovation distributions are used for durations and returns, and the total variance of returns is decomposed into different volatility components associated with different transaction horizons. Our new model strongly dominates existing specifications in the literature. The conditional hazard functions are non-monotonic and there is strong evidence for different volatility components. Although diurnal patterns, volatility components, and market microstructure implications are similar across the markets, there are interesting differences. Durations for lightly traded Chinese stocks tend to carry more information than heavily traded stocks. Chinese investors usually have longer investment horizons, which may be explained by the specific trading rules in China.