作为资本市场的重要定价因素,股票意见分歧多由分析师预测差异来度量,但该指标具有低覆盖、高时滞、报喜藏忧等问题。为此,本文依照监管机构要求的投资者分类标准,构造保守型、稳健型、平衡型、积极型、激进型五类AI智能体,利用各智能体对股票新闻的评价差别构建AI分歧指标,识别由新闻引发的股票意见分歧。实证分析发现:(1)新闻意见分歧在当月推高股票价格,致使未来4个月股票产生较低的收益率和较高的暴跌概率。(2)在套利成本更高的股票中,意见分歧对股票价格的扰动更为剧烈。(3)意见分歧吸引小单和中单交易的追捧,引致特大单的反向交易。(4)新闻意见分歧导致股票高波动和价格高估,可以部分解释特质性波动率之谜。本研究弥补了意见分歧在当期推高估值的实证缺失,一定程度上解决了AI收益率预测的前视偏差顾虑。
展开